

Journal of Organometallic Chemistry 485 (1995) 85-100

Vinyliden-Übergangsmetallkomplexe XXX *. Reaktionen von Acetato- und Trifluoracetato-Rhodium(I)-Komplexen mit 1-Alkinen: Ein Beispiel für die Balance zwischen isomeren π -Alkin-, Alkinyl(hydrido)- und Vinyliden-Metallverbindungen

Martin Schäfer, Justin Wolf, Helmut Werner *

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Deutschland

Eingegangen den 14. März 1994

Abstract

The rhodium complex $[Rh(\eta^2-O_2CCF_3)(PiPr_3)_2]$ (2) reacts with 1-alkynes at $-20^{\circ}C$ in pentane to give either four-coordinate alkynerhodium(I) or six-coordinate alkynyl(hydrido)rhodium(III) derivatives. On heating, both types of complexes, *trans*- $[Rh(\eta^1-O_2CCF_3)(HC\equiv CR)(PiPr_3)_2]$ (6–8) and $[RhH(C\equiv CR)(\eta^2-O_2CCF_3)(PiPr_3)_2]$ (9,10), rearrange to give the isomeric vinylidenerhodium(I) compounds *trans*- $[Rh(\eta^1-O_2CCF_3)(=C=CHR)(PiPr_3)_2]$ (11–14). Analogous acetatorhodium(I) and -rhodium(III) complexes, *trans*- $[Rh(\eta^1-O_2CCH_3)(HC\equiv CR)(PiPr_3)_2]$ (16,17), $[RhH(C\equiv CR)(\eta^2-O_2CCH_3)(PiPr_3)_2]$ (18,19) and *trans*- $[Rh(\eta^1-O_2CCH_3)(HC\equiv CR)(PiPr_3)_2]$ (16,17), $[RhH(C\equiv CR)(\eta^2-O_2CCH_3)(PiPr_3)_2]$ (18,19) and *trans*- $[Rh(\eta^1-O_2CCH_3)(=C=CHR)(PiPr_3)_2]$ (23,24) were prepared via similar routes. Compound 18 (R = Ph) reacts with CO at $-78^{\circ}C$ to give $[RhH(C\equiv CPh)(\eta^1-O_2CCH_3)(CO)(PiPr_3)_2]$ (20) which at room temperature loses CH_3CO_2H to yield *trans*- $[Rh(C\equiv CPh)(CO)(PiPr_3)_2]$ (21). The dihydrido complexes $[RhH_2-(\eta^2-O_2CR)(PiPr_3)_2]$ (4,5) have also been used as starting materials for the synthesis of alkynyl(hydrido)rhodium(II) and vinylidenerhodium(I) derivatives. From compound 5 (R = CH_3) and HC\equiv CR (R = H, Ph), the alkynyl(ethene) complexes *trans*- $[Rh(C\equiv CR)(=C=CHR)(PiPr_3)_2]$ (23,34) were obtained from *trans*- $[Rh(\eta^1-O_2CCH_3)(HC\equiv CCO_2Me)(PiPr_3)_2]$ (17) as well as $[RhH(C\equiv CPh)(\eta^2-O_2CCH_3)(PiPr_3)_2]$ (18) and HC\equiv CR in presence of base. The unusual alkynyl(vinyl)rhodium(III) complex 32 is accessible along four routes, from 33 (R = CO_2Me) or from one of the isomers 17, 26, 28 and HC\equiv CCO_2Me.

Zusammenfassung

Der Rhodiumkomplex $[Rh(\eta^2-O_2CCF_3)(PiPr_3)_2]$ (2) reagiert mit 1-Alkinen in Pentan bei $-20^{\circ}C$ entweder zu vierfach koordinierten Alkinrhodium(I)- oder sechsfach koordinierten Alkinyl(hydrido)rhodium(III)-Derivaten. Beim Erwärmen gehen die Vertreter der beiden Komplextypen *trans*- $[Rh(\eta^1-O_2CCF_3)(HC\equiv CR)(PiPr_3)_2]$ (6-8) und $[RhH(C\equiv CR)(\eta^2-O_2CCF_3)(PiPr_3)_2]$ (9,10) eine Umlagerung zu den isomeren Vinylidenrhodium(I)-Verbindungen *trans*- $[Rh(\eta^1-O_2CCF_3)(=C=CHR)(PiPr_3)_2]$ (11-14) ein. Die analogen Acetatorhodium(I)-und -rhodium(III)-Komplexe *trans*- $[Rh(\eta^1-O_2CCH_3)(HC\equiv CR)(PiPr_3)_2]$ (16,17), $[RhH(C\equiv CR)(\eta^2-O_2CCH_3)(PiPr_3)_2]$ (18,19) und *trans*- $[Rh(\eta^1-O_2CCH_3)(=C=CHR)(PiPr_3)_2]$ (23,24) sind auf ähnlichen Wegen erhältlich. Die Verbindung 18 (R = Ph) reagiert bei $-78^{\circ}C$ mit CO zu dem oktaedrischen Komplex $[RhH(C\equiv CPh)(\eta^1-O_2CCH_3)(CO)-(PiPr_3)_2]$ (20), der bei Raumtemperatur unter Abspaltung von CH_3CO_2H *trans*- $[Rh(C\equiv CPh)(CO)(PiPr_3)_2]$ (21) bildet. Die Dihydrido-Komplexe $[RhH_2(\eta^2-O_2CR)(PiPr_3)_2]$ (4,5) können ebenfalls als Ausgangsmaterialien für die Synthese von Alkinyl(hydrido)rhodium(III)- und Vinylidenrhodium(I)-Verbindungen eingesetzt werden. Ausgehend von 5 (R = CH_3) und HC=CR (R = H, Ph) sind die Alkinyl(ethen)-Komplexe *trans*- $[Rh(C\equiv CR)(C_2CH_4)(PiPr_3)_2]$ (29,30) zugänglich. Die vergleichbaren vierfach koordinierten Alkinyl(vinyliden)rhodium(I)-Verbindungen *trans*- $[Rh(C\equiv CR)(=C=CHR)(PiPr_3)_2]$ (33,34) werden entweder aus

^{*} Für XXIX Mitteilung siehe H. Werner, T. Rappert, R. Wiede-

mann, J. Wolf und N. Mahr, Organometallics, 13 (1994) 2721.

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)24750-D

trans-[Rh(η^1 -O₂CCH₃)(HC=CCO₂Me)(PiPr₃)₂] (17) oder [RhH(C=CPh)(η^2 -O₂CCH₃)(PiPr₃)₂] (18) und HC=CR bei Gegenwart einer Base erhalten. Der ungewöhnliche Alkinyl(vinyl)rhodium(III)-Komplex 32 entsteht auf vier verschiedenen Routen, und zwar entweder ausgehend von 33 (R = CO₂Me) oder von einem der Isomere 17, 26, 28 und HC=CCO₂Me.

Keywords: Vinylidene complexes; Alkinyl(hydrido) complexes; Isomerization; Alkyne complexes; Rhodium; Acetato complexes

1. Einleitung

Auf der Suche nach reaktiven Bis(triisopropylphosphan)rhodium-Komplexen, die nicht wie [RhCl- $(PiPr_3)_2]_2$ (1) eine bei Folgereaktionen teilweise hinderliche Rh-Cl-Bindung enthalten, hatten wir kürzlich aus 1 die entsprechenden π -Allvl- und π -Benzvl-Verbindungen $[Rh(\eta^3-C_3H_4R)(PiPr_3)_2]$ (R = H, Me, Ph) bzw. $[Rh(\eta^{3}-CH_{2}C_{6}H_{4}R)(PiPr_{3})_{2}]$ (R = H, Me) synthetisiert [1,2]. Aus diesen sind durch Umsetzung mit Carbonsäuren RCO₂H die im Gegensatz zu [Rh- $(C_2H_4)_2(\mu$ -O_2CCH_3)]_2 [3] monomeren Carboxylato-Komplexe [Rh(η^2 -O₂CR)(PiPr₃)₂] zugänglich, von denen diejenigen mit $R = CF_3$ und CH_3 sehr bereitwillig mit CO, C_2H_4 , O_2 und H_2 (siehe Schema 1) unter Addition reagieren [4]. Die Beobachtung, daß [Rh(η^2 - $O_2CCF_3)(PiPr_3)_2$ (2) auch mit Trifluoressigsäure eine Reaktion eingeht, bei der die Rhodium(III)-Verbindung [RhH(O_2CCF_3)₂(PiPr₃)₂] entsteht, brachte uns auf die Idee, die Komplexe 2 und $[Rh(\eta^2 O_2CCH_3(PiPr_3)_2$ (3) ebenfalls mit aciden 1-Alkinen umzusetzen. Wie wir nachfolgend zeigen, sind ausgehend von 2 und 3 sowohl Alkin- und Alkinyl(hydrido)als auch Vinyliden-Rhodium-Verbindungen erhältlich, wobei es für die Stabilisierung der jeweiligen Isomere wichtig ist, daß der Carboxylatligand die Fähigkeit zur einzähnigen und zweizähnigen Koordination besitzt. Einige Ergebnisse dieser Arbeiten sind in einer Kurzmitteilung erwähnt [1].

2. Reaktionen des Trifluoracetato-Komplexes [Rh(η^2 -O₂CCF₃)(P*i*Pr₃)₂] (2) mit 1-Alkinen

Der Komplex 2, der sich bereits bei den Umsetzungen mit CO, C_2H_4 , H_2 , O_2 als reaktiver im Vergleich zur analogen Acetato-Verbindung 3 erwiesen hatte, reagiert mit Acetylen, Phenylacetylen und Propiolsäuremethylester bereits bei -20° C, was an der spontanen Farbänderung der Reaktionslösung von Rotviolett nach Gelb zu erkennen ist. Nach Abziehen des Solvens erhält man gelbe, kristalline Feststoffe, die nur mäßig oxidationsempfindlich sind und laut Elementaranalyse 1:1-Addukte von 2 und HC=CR darstellen. Aufgrund der Lage der C=C-Valenz- und der asymmetrischen OCO-Valenzschwingung in den IR-Spektren besteht kein Zweifel, daß es sich bei den Verbindungen 6-8 (siehe Schema 2) um Alkin-Komplexe handelt, in denen der Trifluoracetatligand nur einzähnig gebunden ist.

Zu einem anderen Ergebnis führt die Umsetzung von 2 mit Propin. Es tritt zwar auch hier ein rascher Farbwechsel von Rotviolett nach Gelb ein, doch bei dem isolierten Produkt handelt es sich nicht um den Alkinkomplex [Rh(η^1 -O₂CCF₃)(HC=CMe)(PiPr₃)₂], sondern um die isomere Alkinyl(hydrido)-Verbindung 9. Den dazu analogen Komplex 10 erhält man durch thermische Umlagerung von 7 in Benzol bei Raumtemperatur. Charakteristisches Merkmal in den ¹H-NMR-Spektren von 9 und 10 ist das Signal des Hydridliganden im Hochfeldbereich bei $\delta - 23.6$ bzw. -23.0 ppm, das durch Rhodium- und Phosphorkopplungen in ein Dublett-von-Tripletts aufgespalten ist.

Interessanterweise sind nicht nur die Alkin- sondern auch die Alkinyl(hydrido)-Komplexe in Lösung labil und lagern sich in Benzol zum Teil ziemlich rasch in die entsprechenden Vinyliden-Isomere 11-14 um (Schema 3). Lediglich bei der Reaktion von 8 zu 13 und bei der Umlagerung von 9 zu 14 ist ein Erwärmen auf 40-50°C erforderlich. Die Verbindungen 11-14 sind ebenso wie die entsprechenden Chloro-Komplexe trans-[RhCl(=C=CHR)(PiPr_3)_2] [5,6] tieffarbige kristalline Festkörper, die sich außer in Pentan in anderen organischen Solventien gut bis sehr gut lösen. In den ¹³C-NMR-Spektren von 11-14 erscheint das Signal des Vinyliden- C_{α} -Atoms mit der für Carben-C-Atome typischen Tieffeldverschiebung [7] bei δ 300 ppm, während die Resonanz des C_{β}-Atoms bei δ 90-110 ppm auftritt. Die Rh-C- und P-C-Kopplungskonstanten beider Signale unterscheiden sich nur wenig von denen der Chloro-Analoga [5,6], was auf einen

Schema 1.

Schema 3.

vergleichbaren *trans*-Einfluß des anionischen Liganden X^- auf die Rh=C=CHR-Bindungseinheit hinweist. In bezug auf die Struktur der Komplexe **11–14** in Lösung sollte erwähnt werden, daß die für eine starre Anordnung zu erwartende Diastereotopie der P*i*Pr₃-Methylprotonen weder in den ¹H- noch in den ¹³C-NMR-Spektren zu beobachten ist, was auf eine sehr rasche Rotation des Vinylidenliganden um die Rh-C-C-Achse schließen läßt.

Durch Umsetzung mit Pyridin kann man die Chelatbindung zwischen Metall und Trifluoracetat einseitig öffnen und, wie exemplarisch mit 10 gezeigt wurde (siehe Schema 4), die oktaedrische Verbindung 15 mit sechs einzähnigen Liganden darstellen. Das gleiche Produkt erhält man aus dem Alkin-Komplex 7 und erstaunlicherweise auch aus der Vinylidenverbindung

12. Die zuletzt genannte Reaktion ist reversibel, so daß beim Rühren einer Benzollösung von 15 in Abwesenheit von überschüssigem Pyridin wieder 12 entsteht. Der Pyridin-Komplex 15 ist ein farbloser Feststoff, der in seinen Eigenschaften (Löslichkeit, Stabilität an Luft) an andere Rhodium(III)-Verbindungen des Typs [RhHX(C=CR)(py)(PiPr_3)_2] erinnert [8].

3. Reaktionen des Acetato-Komplexes $[Rh(\eta^2-O_2C-CH_3)(PiPr_3)_2]$ (3) mit 1-Alkinen

Die im Vergleich zu 2 deutlich stabilere Chelatbindung des Carboxylato-Liganden in 3 zeigt sich nicht nur im Verhalten dieses Komplexes gegenüber H_2 , O_2 etc. [4], sondern auch gegenüber 1-Alkinen. Es findet zwar bei Einwirkung von Acetylen oder Propiolsäuremethylester auf Lösungen von 3 in Pentan bereits bei -40° C eine Reaktion statt, bei der unter Spaltung einer Rh-O-Bindung die Komplexe 16 und 17 (Schema 5) entstehen, jedoch sind diese Verbindungen sowohl in Festsubstanz als auch in Lösung wesentlich labiler als die entsprechenden Trifluoracetato-Derivate 6 und 8. Die Labilität ist allerdings nicht auf eine rasche Isomerisierung zu den Alkinyl(hydrido)- oder Vinyliden-Komplexen, sondern vor allem auf die leichte Ab-

spaltung des Alkinliganden zurückzuführen. Bei Anlegen eines Vakuums an Lösungen von 16 wird das leicht flüchtige Acetylen vollständig aus der Koordinationssphäre des Metalls entfernt und man erhält quantitativ die Ausgangsverbindung 3 zurück.

Die Komplexe 16 und 17 sind gelbe, thermisch wenig belastbare Feststoffe, die sich bereits bei 37°C (16) bzw. 56°C (17) zersetzen. Die aufgrund ihrer Empfindlichkeit bei tiefen Temperaturen aufgenommenen ¹Hund ³¹P-NMR-Spektren zeigen die für quadratischplanare Rhodium(I)-Verbindungen mit *trans*-ständigen $PiPr_3$ -Liganden erwarteten Signale. Die Lage und Aufspaltung der Resonanzen der Alkinprotonen unterscheiden sich nur wenig von denen der Trifluoracetato-Komplexe 6 und 8 und bedürfen daher keiner weiteren Diskussion.

Im Unterschied zu Acetylen und Propiolsäuremethylester reagieren weder Phenylacetylen noch Propin bei tiefen Temperaturen mit 3 in Pentan. Erst beim Erwärmen auf Raumtemperatur verfärben sich die Reaktionslösungen von Rot nach Gelbbraun und man kann schließlich einen hellgelben (R = Ph) bzw. farblosen (R = Me) Feststoff isolieren. Wie die NMR-Spektren zeigen, handelt es sich dabei um die Alkinyl-(hydrido)rhodium(III)-Verbindungen 18 und 19, die vermutlich über die isomeren Alkin-Komplexe trans- $[Rh(\eta^{1}-O_{2}CCH_{3})(HC\equiv CR)(PiPr_{3})_{2}] (R = Ph, Me)$ durch intramolekulare oxidative Addition entstehen. Aussagekräftig im Hinblick auf die Struktur sind neben den NMR- auch die IR-Spektren, in denen außer den erwarteten Banden für die Rh-H- und die C≡C-Valenzschwingungen eine Absorption für die asymmetrische OCO-Schwingung bei 1525 cm⁻¹ (18) bzw. 1555 cm⁻¹ (19), d.h. in dem für chelatartig gebundene Acetatgruppen typischen Bereich [9] erscheint.

Überraschend ist das Verhalten der in fester Form stabilen Komplexe 18 und 19 in Lösung. Bei Raumtemperatur tritt nur eine sehr langsame Farbänderung von Gelb nach Rot ein, die nicht auf eine vollständige Isomerisierung zu den entsprechenden Vinylidenverbindungen schließen läßt. Tatsächlich zeigen die nach mehreren Tagen aufgenommenen ¹H- und ³¹P-NMR-Spektren, daß ein Substanzgemisch vorliegt, in dem die Komplexe 23 und 24 (siehe Schema 6) nur zu ca. 10%(R = Ph) bzw. 30% (R = Me) enthalten sind. Neben den als Hauptanteil vorhandenen Alkinyl(hydrido)-Verbindungen 18 und 19 sind geringe Mengen des Acetato-Komplexes 3 nachweisbar. Bei dem Versuch, durch stufenweise Erhöhung der Reaktionstemperatur auf 40°C, 60°C und 80°C eine vollständige Umlagerung von 18 und 19 in 23 bzw. 24 zu erreichen, tritt rasche Zersetzung ein.

Die Synthese der Vinyliden-Komplexe 23 und 24 gelingt auch nicht durch Umsetzung von 18 bzw. 19 mit Pyridin. Selbst mehrtägiges Rühren einer Benzollösung von 18 mit überschüssigem Pyridin führt nicht zu einer

Öffnung der Metall-Chelat-Bindung. Dies ist erst durch Einwirkung von CO möglich, wobei allerdings bei -60° C gearbeitet werden muß. Versuche, die durch Tieftemperatur-NMR-Spektren charakterisierte Verbindung **20** durch Abdestillieren des Solvens im Vakuum zu isolieren, liefern aufgrund der Reversibilität der Adduktbildung nur die Ausgangssubstanz **18** zurück. Die Darstellung von **20** gelingt durch Feststoffreaktion von feinpulvrigem **18** mit CO bei -78° C. Der gebildete Alkinyl(carbonyl)hydrido-Komplex ist auch in fester Form nur unter CO-Atmosphäre stabil, so daß bisher noch keine zufriedenstellenden Analysenwerte erhalten werden konnten. Aufgrund der spektroskopischen Daten besteht jedoch an dem in Schema 6 angegebenen Strukturvorschlag kein Zweifel.

Bemerkenswerterweise ist die Verbindung **20** in Lösung, selbst in Gegenwart von überschüssigem CO, nicht haltbar und reagiert unter Abspaltung von Essigsäure zu dem quadratisch-planaren Komplex *trans*-[Rh(C=CPh)(CO)(PiPr₃)₂] **(21**). Dieser ist ebenfalls aus der σ -Benzyl-Verbindung **22** [2] und Phenylacetylen in Pentan bei Raumtemperatur erhältlich. Außerdem entsteht dabei Toluol. Der Alkinyl(carbonyl)rhodium(I)-Komplex **21** ist ein hellgelber, luftstabiler Feststoff, der IR-spektroskopisch durch intensive Banden für die C=C- und CO-Valenzschwingung bei 2080 bzw. 1945 cm⁻¹ und ¹³C-NMR-spektroskopisch durch zwei Signale im Tieffeldbereich bei δ 125 und 120 ppm für die Alkinyl-Kohlenstoffatome charakterisiert ist.

Die durch thermische Umlagerung von 18 und 19 nicht in reiner Form zugänglichen Vinyliden-Komplexe 23 und 24 können durch Bestrahlung verdünnter Lösungen der isomeren Alkinyl(hydrido)-Verbindungen in Pentan bei -20° C dargestellt werden. Nach Tieftemperatur-Kristallisation erhält man die zu 12 und 14 analogen Komplexe 23 und 24 als violette, luftstabile Feststoffe mit einer Ausbeute von ca. 50%. Kontrolliert man den Reaktionsverlauf ³¹P-NMRspektroskopisch, so erkennt man, daß neben der Isomerisierung auch teilweise Zersetzung stattfindet.

Im Unterschied zu den Chloro- und Trifluoracetato-Komplexen trans-[RhX(=C=CHR)(PiPr₃)₂] (X = Cl, O_2CCF_3 ; R = Ph, Me) sind die strukturell sehr ähnlichen Verbindungen 23 und 24 bei Raumtemperatur nicht stabil und reagieren langsam zu den Alkinyl(hydrido)rhodium(III)-Isomeren 18 und 19 zurück. Dabei stellt sich nach einigen Stunden in Benzol- oder Toluol-Lösung das gleiche Edukt/Produkt-Verhältnis ein, wie bei der thermischen Umlagerung von 18 bzw. 19 in 23 bzw. 24. Auffällig ist die Abhängigkeit der Geschwindigkeit der Reisomerisierung von der Konzentration. Während z.B. sehr verdünnte Lösungen von 23 (ca. 5×10^{-2} M) in Benzol relativ stabil sind und selbst nach 10 Stunden bei 25°C der Phenylvinyliden-Komplex 23 nur zu ca. 10% zu der Alkinyl(hydrido)-Verbindung 18 isomerisiert, erreicht man bei einer zehnmal höheren Konzentration das Gleichgewichtsverhältnis von 23/18 = 10/90 bereits nach ca. 2 Stunden. Für die Umlagerung von 24 in 19 ist die Situation sehr ähnlich; in diesem Fall erhält man bei Verwendung einer 0.2 M-Lösung des Methylvinyliden-Komplexes die Gleichgewichtseinstellung von 24/19 =30/70 nach ca. einem Tag.

4. Reaktionen der Dihydridorhodium(III)-Komplexe 4 und 5 mit 1-Alkinen

Da Alkinyl(hydrido)metall-Verbindungen eine wichtige Rolle bei der Umwandlung von 1-Alkinen in Vinylidene und außerdem — wie unten gezeigt — bei Insertionsreaktionen spielen, suchten wir noch nach einer anderen Darstellungsmethode für diese Komplexe. Sowohl wir [10,11] als auch Bianchini et al. [12] hatten schon früher gefunden, daß Dihydridometall-Verbindungen als Ausgangssubstanzen für die Synthese von Iridium- und Rhodiumkomplexen mit der Baueinheit MH(C=CR) geeignet sind.

Bei Zugabe einer äquimolaren Menge von Phenylacetylen zu einer Lösung von 4 (siehe Schema 1) in Pentan bildet sich nur zu etwa 50% das gewünschte Produkt 10. Außer dem Edukt 4 läßt sich in dem Reaktionsgemisch Styrol nachweisen. Bei der Umsetzung von 4 mit zwei Äquivalenten HC=CPh werden dagegen quantitativ der Alkinyl(hydrido)-Komplex 10 und CH₂=CHPh gebildet. Ganz analog verläuft die Reaktion von 4 mit Propin, bei der neben 9 auch Propen entsteht. Die Umsetzung von 4 mit Acetylen führt im Unterschied dazu nicht zu [RhH(C=CH)(η^2 -O₂CCF₃)(PiPr₃)₂], sondern zu der isomeren Vinylidenrhodium(I)-Verbindung 11. Als weiteres Produkt ist hierbei Ethen nachweisbar. Hinsichtlich des Mechanismus der in Schema 7 zusammengefaßten Reaktionen

nehmen wir an, daß zuerst aus 4 und HC=CR durch Insertion eine Hydrido(vinyl)rhodium(III)-Zwischenstufe entsteht, die mit einem zweiten Alkinmolekül unter Abspaltung des Olefins CH₂=CHR zu *trans*-[Rh- $(\eta^1-O_2CCF_3)(HC=CR)(PiP_3)_2$] reagiert. Daraus bildet sich dann durch intramolekulare oxidative Addition der Alkinyl(hydrido)- und für R=H schließlich der Vinyliden-Komplex.

Im Gegensatz zu den Reaktionen von 4 mit 1-Alkinen führen im Fall der strukturanalogen Acetato-Verbindung 5 nicht nur die Umsetzungen mit Phenylacetylen und Propin, sondern auch diejenigen mit Acetylen und Propiolsäuremethylester zu den entsprechenden oktaedrischen Alkinyl(hydrido)-Verbindungen 18, 19, 25, und 26 (Schema 8). Während 25 ebenso wie 18 und 19 ein farbloser, wenig luftempfindlicher Feststoff ist, ließ sich der Komplex 26 bisher nur als Öl isolieren; er wurde IR- sowie ¹H- und ³¹P-NMR-spektroskopisch charakterisiert. Typisch ist in den NMR-Spektren aller aus 5 entstehenden Verbindungen 18, 19, 25, und 26 das Hydridsignal im Hochfeldbereich des ¹H-NMR-Spektrums bei δ –21 bis –22 ppm sowie die zu einem Dublett aufgespaltene Resonanz im ³¹P-NMR-Spektrum bei δ 46 bis 48 ppm, deren Rh-P-Kopplungskonstante mit 100 Hz deutlich kleiner als diejenige des Dubletts in den Spektren der

quadratisch-planaren Vinylidenkomplexe (ca. 140 Hz) ist.

Die Verbindungen 25 und 26 lagern sich im Unterschied zu 18 und 19 bereits bei Raumtemperatur in Benzol oder Aceton in die Isomere 27 und 28 um. Die Ausbeute ist nahezu quantitativ. Die stark differierende Umlagerungsgeschwindigkeit (sie ist in Benzol für 26 wesentlich größer als für 25) könnte auf den Mesomerieeffekt der Estergruppierung und der dadurch begünstigten Bildung eines polaren Übergangszustandes [13] zurückzuführen sein.

Da bei der Zugabe von 1-Alkinen HC=CR zu Lösungen von 5 spontan eine Farbänderung nach Orange eintritt, die danach langsam nach Gelb umschlägt, haben wir versucht, die primär gebildete Zwischenstufe zu isolieren. Leitet man zu diesem Zweck einige Minuten Acetylen in eine auf - 30°C gekühlte Lösung von 5 in Aceton oder Pentan, so kristallisiert recht bald ein leuchtend orangefarbener Feststoff aus. Die analytischen und spektroskopischen Daten zeigen, daß es sich dabei um den Alkinyl(ethen)-Komplex 29 (Schema 9) handelt. Als zweites Produkt entsteht Essigsäure, was bereits an dem Geruch der Reaktionslösung zu erkennen ist. Setzt man analog Phenylacetylen mit 5 in Aceton bei -30° C um, so bildet sich zwar vermutlich der erwartete Styrol-Komplex trans-[Rh(C=CPh)(CH, =CHPh)($PiPr_3$), der aber offensichtlich labil ist und sich nicht fassen läßt. Dagegen gelingt die Isolierung der zu 29 analogen Phenylalkinyl-Verbindung 30, wenn die Reaktion von 5 mit HC=CPh bei tiefer Temperatur unter Ethenatmosphäre durchgeführt wird. Eine zweite Darstellungsmethode für 30 ist die Umsetzung von 18 mit einem Überschuß iC_3H_7MgCl in Ether bei $-20^{\circ}C$ in Gegenwart von Ethen. (Wird 18 in Gegenwart von Ethen mit einem Äquivalent iC_3H_7MgCl umgesetzt, so entsteht durch Acetat-Chlorid-Austausch der schon früher [8a] von uns beschriebene Komplex $[RhH(C=CPh)Cl(PiPr_3)_2])$. Die hierbei ebenso wie bei

der Bildung von **29** erfolgende Abspaltung von Essigsäure ist reversibel, so daß aus den Ethen-Komplexen durch Zugabe einer äquimolaren Menge CH_3CO_2H die Alkinyl(hydrido)rhodium(III)-Verbindungen **18** und **25** wieder entstehen (Schema 9).

Der relativ stabile Komplex **19** reagiert auch bei längerem Rühren unter Ethen nicht unter Eliminierung von CH₃CO₂H zu *trans*-[Rh(C=CMe)(C₂H₄)-(P*i*Pr₃)₂] (**31**). Zur Herstellung dieser Verbindung ist es daher notwendig, in Gegenwart einer starken Base wie NaN(SiMe₃)₂ oder eines Grignardreagenz zu arbeiten. Die Ausbeute an **31** beträgt allerdings auch dann nicht mehr als 50–60%, was vermutlich auf Nebenreaktionen der postulierten oktaedrischen Zwischenstufe [RhH(C=CMe)(η^1 -O₂CCH₃)(C₂H₄)-(P*i*Pr₃)₂] (siehe Schema 10) zurückzuführen ist.

5. Folgereaktionen der Acetato(alkin)- und Acetato(alkinyl)hydrido-Komplexe mit 1-Alkinen

Die aus 3 bzw. 5 erhaltenen Komplexe 17 und 26 mit der Baueinheit Rh(HC=CCO₂Me) bzw. RhH(C=C-CO₂Me) sind in Gegenwart von Propiolsäuremethylester nicht stabil und reagieren bei Raumtemperatur in Pentan mit einem weiteren Molekül HC=CCO₂Me zu der oktaedrischen Rhodium(III)-Verbindung 32 (Schema 11). Das Vorliegen eines CO₂Me-substituier-

ten Vinylliganden wird vor allem durch das ¹H-NMR-Spektrum belegt. Dieses zeigt für die an den C_{α} - und C_{β} -Atomen der Rh-CH=CHCO₂Me-Einheit gebundenen Protonen zwei Signale bei δ 9.57 und 6.67 ppm, die durch H-H-, Rh-H- und P-H-Kopplungen zu Dubletts-von-Dubletts-von-Tripletts aufgespalten sind. Die Kopplungskonstante ³J(HH) von 14.8 Hz spricht dafür, daß die Vinylprotonen *trans*-ständig sind.

Verfolgt man den Verlauf der Reaktion von 17 und 26 mit HC=CCO, Me NMR-spektroskopisch, so kann man erkennen, daß in der Anfangsphase außer 32 als Hauptkomponente eine weitere Verbindung vorliegt, deren Konzentration ständig abnimmt. Nach ca. 30 min ist nur noch der Komplex 32 nachweisbar. Die ¹Hund ³¹P-NMR-Daten der Zwischenstufe lassen darauf schließen, daß es sich hierbei um die Acetat-freie Verbindung 33 (siehe Schema 11) handelt. Ihre Isolierung gelingt, wenn der in situ erzeugte Alkin-Komplex 17 mit HC=CCO₂Me bei -40°C in einem 1/1-Gemisch aus Pentan und NEt₃ in Gegenwart von überschüssigem wasserfreiem Na₂CO₃ umgesetzt wird. Die beim Erwärmen des Reaktionsgemisches auf Raumtemperatur eintretende Farbänderung von Orange nach Dunkelblau zeigt die Bildung des Vinylidenderivats an. Man erhält 33 in Form eines blauschwarzen feinkristallinen Feststoffs, der thermisch ähnlich stabil wie die entsprechende Chloro-Verbindung trans-[Rh- $Cl(=C=CHCO_2Me)(PiPr_3)_2$ [6] ist und dessen Eigenschaften sich auch sonst wenig von dieser unterscheiden. Die Verbindung 33 reagiert erwartungsgemäß sehr bereitwillig mit Essigsäure und liefert quantitativ den Alkinyl(vinyl)rhodium(III)-Komplex 32.

Ahnlich wie 26 ist auch die strukturanaloge Verbindung 18 zu einer Folgereaktion mit dem für ihre Darstellung verwendeten 1-Alkin befähigt. Setzt man 18 mit HC=CPh in Pentan/NEt, in Anwesenheit von NaOH um, so beobachtet man eine langsame Farbänderung von Gelb nach Blaugrün, und es läßt sich aus der Reaktionslösung der Alkinyl(vinyliden)-Komplex 34 (siehe Schema 12) isolieren. Die Zusammensetzung der in Substanz stabilen, in Lösung dagegen nur wenige Stunden unzersetzt haltbaren Verbindung ist durch die Elementaranalyse und die spektroskopischen Daten belegt. Charakteristisch im ¹³C-NMR-Spektrum von 34 sind im Tieffeldbereich vier Signale für die Kohlenstoffatome der linearen C=C-Rh=C=C-Gruppierung. von denen drei durch Rh-C- und P-C-Kopplungen zu Dubletts-von-Tripletts und eines (das des $RhC \equiv C$ -Atoms) durch Rh-C-Kopplung in ein Dublett aufgespalten sind. Das ³¹P-NMR-Spektrum von **34** zeigt eine Dublett-Resonanz bei δ 46.8 ppm mit der für Verbindungen des Typs trans-[RhX(=C=CHR)(PiPr_3)₂] [5,6] typischen Rh-P-Kopplungskonstante von ca. 140 Hz.

Einen anderen Verlauf als die Umsetzung von 18 mit HC=CPh nimmt die Reaktion des Ethinyl(hydrido)-Komplexes 25 mit Acetylen. Man beobachtet zunächst nur eine langsame Verfärbung des Reaktionsgemisches von Hellgelb nach Gelbbraun und die Bildung geringer Mengen eines violetten Niederschlags, bei dem es sich wahrscheinlich um Polyacetylen handelt. Aus der nach 4 h Rühren erhaltenen Lösung wird nach Abziehen des Solvens ein Substanzgemisch isoliert, das neben dem erwarteten, äußerst labilen Insertionsprodukt [Rh(C=CH)(CH=CH_2)(η^2 -O_2C- $(H_3)(PiPr_3)_2$ als Hauptkomponente den Vinylester-Komplex 35 enthält. Der in Schema 12 angegebene Strukturvorschlag stützt sich sowohl auf die IR- als auch auf die NMR-Spektren, die klar darauf hinweisen, daß in 35 ebenso wie in 25 das Strukturelement [RhH(C=CH)(PiPr₃)₂] vorliegt. Für die chelatartige Koordination der Vinylestergruppierung spricht die OCO-Schwingung im IR-Spektrum bei 1640 cm⁻¹ und die für das Metall-gebundene Kohlenstoffatom gefundene ¹³C-Resonanz bei 198 ppm, die bei höherem Feld als das Signal für Rh=C=CHR und bei niedrigerem Feld als das Signal für Rh-C≡CR von 34 auftritt. Im Spektrum der von uns [14] kürzlich synthetisierten Cyclopentadienylruthenium-Verbindung mit -C(=CH- $CO_2Me)OC(CH_3)O$ als Chelatligand erscheint die Resonanz des Ru-C-Atoms bei δ 225 ppm. Die trans-Anordnung von Vinyl- und Alkinyl-Einheit in 35 wird durch ein ¹H-off-resonance-¹³C-NMR-Spektrum [15] bestätigt, welches zeigt, daß die Werte der reduzierten ²J(CH)-Kopplungskonstanten des Rh-H-Atoms mit den C_a-Atomen der beiden Organylliganden in einer vergleichbaren Größenordnung (5.9 und 4.4 Hz) liegen. Bei einer cis-Stellung dieser Gruppen wären aufgrund der linearen Anordnung H-Rh-C_a für einen der beiden Liganden deutlich unterschiedliche Werte für ²J(CH)_{red} zu erwarten [15].

Die Rh-O-Bindung in 35 ist erstaunlich stabil, so daß selbst bei mehrstündiger Einwirkung von CO keine Öffnung des Chelatrings eintritt. Im Gegensatz dazu ist die C_{α} -O-Bindung des Vinylesterliganden labil. Der Komplex 35 zersetzt sich daher in Benzol bei

Raumtemperatur innerhalb einer Woche unter Bildung eines Produktgemisches, das neben CH_2 =CHOC-(O)CH₃ und mehreren nicht identifizierbaren Substanzen die Vinyliden-verbindung **27** im Verhältnis von ca. 1/1 zu Vinylacetat enthält. Die Frage, wie die Bildung von **35** mechanistisch verläuft, läßt sich nur vage beantworten. Vermutlich entsteht nach Anlagerung von Acetylen an das Rhodium und anschließender Umlagerung intermediär eine Zwischenstufe mit *cis*-ständiger Vinyliden- und Acetato-Gruppierung, die unter nucleophilem Angriff des freien Acetat-Sauerstoffatoms am C_α-Atom der Rh=C=CH₂-Einheit zu dem Chelat-Fünfring reagiert. Ein ähnlicher Reaktionsverlauf wurde auch bei der Bildung von [C₅H₅Ru-{C(=CHCO₂Me)OC(CH₃)O}(PPh₃)] postuliert [14].

6. Experimenteller Teil

Alle Arbeiten wurden unter gereinigtem Argon und in sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Ausgangsverbindungen $[Rh(\eta^2-O_2CCF_3)(PiPr_3)_2]$ (2), $[Rh(\eta^2-O_2CCH_3)(PiPr_3)_2]$ (3), $[RhH_2(\eta^2-O_2C-CF_3)(PiPr_3)_2]$ (4), $[RhH_2(\eta^2-O_2CCH_3)(PiPr_3)_2]$ (5) und $[Rh(\eta^1-CH_2C_6H_5)(CO)(PiPr_3)_2]$ (22) wurden nach Literaturangaben hergestellt [2,4]. Die Alkine waren Handelsprodukte der Firmen ABCR und Aldrich. Bestimmung der Schmelz- und Zersetzungspunkte durch DTA. NMR: Varian T 60, Varian EM 360 L, Jeol FX 90 Q, Bruker AC 200 und AMX 400. IR: Perkin-Elmer 1420.

6.1. Synthese von trans- $[Rh(\eta^1 - O_2CCF_3)(HC \equiv CH) - (PiPr_3)_2]$ (6)

In eine Lösung von 106 mg (0.20 mmol) **2** in 8 ml Pentan wird bei – 20°C 20 s lang Acetylen eingeleitet, wobei eine rasche Farbänderung von Rot nach Gelb zu beobachten ist. Nach Abdestillieren des Solvens im Vakuum erhält man einen gelben, kurzzeitig luftstabilen Feststoff, der einmal mit 3 ml kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 110 mg (99%); Schmp. 52°C (Zers.). (Gef.: C, 47.01; H, 8.16. $C_{22}H_{44}F_3O_2P_2Rh$ ber.: C, 46.98; H, 7.88%). IR (Hexan): $\tilde{\nu}(\equiv CH)$ 3130, $\tilde{\nu}(C\equiv C)$ 1715, $\tilde{\nu}(OCO)_{asym}$ 1705 cm⁻¹. ¹H-NMR (d₈-Toluol, –40°C, 90 MHz): δ 2.95 (d, J(RhH) 2.4 Hz, 2 H, HC $\equiv CH$), 1.74 (m, 6 H, PCHCH₃), 1.06 (dvt, N 13.1, J(HH) 6.6 Hz, 36 H, PCHCH₃). ³¹P-NMR (d₈-Toluol, –40°C, 36.2 MHz): δ 32.47 (d, J(RhP) 118.7 Hz).

6.2. Synthese von trans- $[Rh(\eta^1 - O_2CCF_3)(HC \equiv CPh) - (PiPr_3)_2]$ (7)

Eine Lösung von 106 mg (0.20 mmol) 2 in 8 ml Pentan wird bei 0°C tropfenweise mit 21 μ l (0.20

mmol) Phenylacetylen versetzt. Die entstandene orangefarbene Lösung wird im Vakuum bis zur beginnenden Kristallbildung eingeengt und zur Vervollständigung der Kristallisation auf - 78°C gekühlt. Man erhält einen gelben, kurzzeitig luftstabilen Feststoff, der abfiltriert, mehrmals mit kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 106 mg (84%); Schmp. 67°C (Zers.). (Gef.: C, 52.41; H, 7.86. C₂₈H₄₈F₃O₂P₂Rh ber.: C, 52.67; H, 7.57%). IR (Hexan): $\tilde{\nu}(\equiv CH)$ 3110, $\tilde{\nu}(C\equiv C)$ 1830, $\tilde{\nu}(OCO)_{asym}$ 1700 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 8.42 (m, 2 H, ortho-H von C₆H₅), 7.40–7.00 (m, 3H, meta- und para-H von C₆H₅), 3.47 (d, J(RhH) 2.9 Hz, 1 H, HC≡CPh), 1.86 (m, 6 H, PCHCH₃), 1.22 und 0.97 (jeweils dvt, N 13.2, J(HH) 6.8 Hz, je 18 H, PCHCH₃). ³¹P-NMR (C_6D_6 , 36.2 MHz): δ 30.62 (d, J(RhP) 120.2 Hz).

6.3. Synthese von trans- $[Rh(\eta^1 - O_2CCF_3)(HC \equiv CCO_2 - Me)(PiPr_3)_2]$ (8)

Eine Lösung von 111 mg (0.21 mmol) 2 in 5 ml Pentan wird bei -20° C tropfenweise mit 19 μ l (0.21 mmol) Propiolsäuremethylester versetzt, wobei eine Farbänderung von Rot nach Gelb zu beobachten ist. Der nach Abziehen des Solvens im Vakuum verbleibende gelbe, wenig oxidationsempfindliche Feststoff wird zweimal mit 1.5 ml kaltem Pentan gewaschen und im Vakuum getrocknet. Ausbeute 116 mg (90%); Schmp. 59°C (Zers.). (Gef.: C, 46.58; H, 7.70. $C_{24}H_{46}F_{3}O_{4}P_{2}Rh$ ber.: C, 46.46; H, 7.47%). IR (KBr): $\tilde{\nu}(\equiv CH)$ 3095, $\tilde{\nu}(C\equiv C)$ 1795, $\tilde{\nu}(OCO)_{asym}$ 1705, $\tilde{\nu}(C=O)$ 1675 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 4.72 (d, J(RhH) 2.3 Hz, 1 H, HC=CCO, Me), 3.48 (s, 3 H, CO₂CH₃), 1.91 (m, 6 H, PCHCH₃), 1.18 und 1.11 (jeweils dvt, N 12.5, J(HH) 6.3 Hz, je 18 H, PCHCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 24.24 (d, J(RhP) 115.8 Hz).

6.4. Synthese von $[Rh(H)(C \equiv CMe)(\eta^2 - O_2CCF_3) - (PiPr_3)_2]$ (9)

(a) In eine Lösung von 240 mg (0.45 mmol) 2 in 10 ml Pentan wird bei -20° C 20 s lang Propin eingeleitet, wobei eine Farbänderung von Tiefrot nach Gelb stattfindet. Nach Einengen der Reaktionslösung auf 3 ml und Abkühlen auf -78° C erhält man einen gelben, kurzzeitig luftstabilen Feststoff, der abfiltriert, zweimal mit wenig kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 160 mg (62%).

(b) In eine Lösung von 223 mg (0.41 mmol) 4 in 10 ml Pentan wird bei -20° C während 45 s Propin eingeleitet. Nach 1 h Rühren bei Raumtemperatur wird die Reaktionsmischung filtriert. Die weitere Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 153 mg (64%); Schmp. 61°C (Zers.). (Gef.: C, 48.23; H, 8.02. C₂₃H₄₆F₃O₂P₂Rh ber.: C, 47.92; H, 8.04%). IR (C₆H₆): $\tilde{\nu}$ (RhH) 2190, $\tilde{\nu}$ (C≡C) 2125, $\tilde{\nu}$ (OCO)_{asym} 1630 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 2.40 (m, 6 H, PCHCH₃), 1.90 (s, br, 3 H, ≡CCH₃), 1.26 und 1.23 (jeweils dvt, N 13.7, J(HH) 7.3 Hz, je 18 H, PCHCH₃), -23.64 (dt, J(RhH) 30.3, J(PH) 12.1 Hz, 1 H, RhH). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 46.48 (d, J(RhP) 101.1 Hz; dd in off-resonance).

6.5. Synthese von $[RhH(C \equiv CPh)(\eta^2 - O_2CCF_3)(PiPr_3)_2]$ (10)

(a) Eine Lösung von 97 mg (0.15 mmol) 7 in 10 ml Benzol wird 10 min bei Raumtemperatur gerührt. Der nach Abziehen des Solvens verbleibende ölige Rückstand wird in 20 ml Pentan gelöst und die Lösung bis zur beginnenden Kristallisation eingeengt. Nach Abkühlen auf -78° C bilden sich gelbe, kurzzeitig luftstabile Kristalle, die abfiltriert, mehrmals mit kaltem Pentan gewaschen und im Vakuum getrocknet werden. Ausbeute 69 mg (71%).

(b) Eine Lösung von 74 mg (0.12 mmol) **4** in 10 ml Pentan wird mit 27 μ l (0.24 mmol) Phenylacetylen versetzt und 1 h bei Raumtemperatur gerührt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 62 mg (81%); Schmp. 90°C (Zers.). (Gef.: C, 52.83; H, 7.84. C₂₈H₄₈F₃O₂P₂Rh ber.: C, 52.67; H, 7.57%). IR (Hexan): $\tilde{\nu}$ (C \equiv C) 2100, $\tilde{\nu}$ (OCO)_{asym} 1630 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 7.18 (m, 5 H, C₆H₅), 2.42 (m, 6 H, PC*H*CH₃), 1.24 und 1.21 (jeweils dvt, N 13.7, *J*(HH) 7.0 Hz, je 18 H, PCHCH₃), -23.04 (dt, *J*(RhH) 30.0, *J*(PH) 11.8 Hz, 1 H, RhH). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 46.06 (d, *J*(RhP) 99.7 Hz; dd in off-resonance).

6.6. Synthese von trans- $[Rh(\eta^{1}-O_{2}CCF_{3})(=C=CH_{2})-(PiPr_{3})_{2}]$ (11)

(a) Eine Lösung von 107 mg (0.19 mmol) **6** in 4 ml Benzol wird 1 h bei Raumtemperatur gerührt. Der nach Abziehen des Solvens im Vakuum verbleibende Rückstand wird in 3 ml Pentan gelöst. Nach Abkühlen der Lösung auf -78° C bilden sich violette Kristalle, die abfiltriert, mehrmals mit kaltem Pentan gewaschen und im Vakuum getrocknet werden. Ausbeute 91 mg (85%).

(b) In eine Lösung von 89 mg (0.16 mmol) 4 in 0.5 ml Benzol wird bei Raumtemperatur 30 s lang Acetylen eingeleitet, wobei eine Farbänderung nach Violett eintritt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 81 mg (87%); Schmp. 82°C. (Gef.: C, 47.22; H, 7.70. $C_{22}H_{44}F_3O_2P_2Rh$ ber.: C, 46.98; H, 7.88%). IR (Hexan): $\tilde{\nu}(OCO)_{asym}$ 1705, $\tilde{\nu}(C=C)$ 1630 cm⁻¹. ¹H-NMR (C₆D₆, 60 MHz): δ 2.35 (m, 6 H, PCHCH₃), 1.20 (dvt, N 13.6, J(HH) 7.0 Hz, 36 H,

PCHC H_3), -0.05 (dt, J(RhH) 0.9, J(PH) 3.0 Hz, 2 H, =CH₂). ¹³C-NMR (C₆D₆, 100.6 MHz): δ 298.28 (dt, J(RhC) 55.6, J(PC) 16.9 Hz, Rh=C), 159.47 (q, J(CF) 35.2 Hz, CF₃CO₂), 117.33 (q, J(CF) 292.7 Hz, CF₃CO₂), 90.40 (dt, J(RhC) 17.1, J(PC) 5.6 Hz, =CH₂), 23.63 (vt, N 19.8 Hz, PCHCH₃), 19.92 (s, PCHCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 42.09 (d, J(RhP) 140.7 Hz).

6.7. Synthese von trans- $[Rh(\eta^1 - O_2CCF_3)(=C=CHPh) - (PiPr_3)_2]$ (12)

(a) Eine Lösung von 107 mg (0.17 mmol) 7 in 5 ml Benzol wird 2 h bei Raumtemperatur gerührt. Danach wird das Solvens im Vakuum entfernt und der verbleibende Rückstand in 5 ml Pentan gelöst. Nach Abkühlen der Lösung auf -78° C bilden sich tiefgrüne, luftstabile Kristalle, die abfiltriert, mehrmals mit kaltem Pentan gewaschen und im Vakuum getrocknet werden. Ausbeute 92 mg (86%).

(b) Eine Lösung von 105 mg (0.16 mmol) **10** in 5 ml Benzol wird 30 min bei Raumtemperatur gerührt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 84 mg (86%).

(c) Eine Lösung von 105 mg (0.15 mmol) 15 in 5 ml Benzol wird 30 min bei Raumtemperatur gerührt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 75 mg (80%); Schmp. 133°C. (Gef.: C, 52.41; H, 7.83; Molmasse 638 (MS). $C_{28}H_{48}F_3O_2P_2Rh$ ber.: C, 52.67; H, 7.57%; Molmasse 638.53). IR (Hexan): $\tilde{\nu}(\text{OCO})_{\text{asym}}$ 1700, $\tilde{\nu}(\text{C=C})$ 1625 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 7.10 (m, 5 H, C₆H₅), 2.34 (m, 6 H, PCHCH₃), 1.49 (dt, J(RhH) 1.3, J(PH) 3.1 Hz, 1 H, =CHPh), 1.21 (dvt, N 13.8, J(HH) 7.2 Hz, 36 H, PCHC H_3). ¹³C-NMR (C₆D₆, 50.3 MHz): δ 303.03 (dt, J(RhC) 57.4, J(PC) 17.1 Hz, Rh=C), 159.44 (q, J(CF) 35.3 Hz, CF₃CO₂), 117.28 (q, J(CF) 292.3 Hz, CF₃CO₂), 113.23 (dt, J(RhC) 16.1, J(PC) 6.0 Hz, =CHPh), 24.09 (vt, N 20.0 Hz, PCHCH₃), 20.08 (s, PCHCH₃); Signale von C_6H_5 sind durch Solvenssignale verdeckt und können nicht eindeutig zugeordnet werden. ³¹P-NMR (C_6D_6 , 36.2 MHz): δ 42.42 (d, J(RhP) 138.4 Hz).

6.8. Synthese von trans- $[Rh(\eta^1-O_2CCF_3)(=C=CHCO_2-Me)(PiPr_3)_2]$ (13)

Eine Lösung von 116 mg (0.19 mmol) **8** in 2 ml Benzol wird 5 h bei 40°C (bzw. 2 d bei Raumtemperatur) gerührt. Der nach Abziehen des Solvens verbleibende Rückstand wird mit 15 ml Pentan extrahiert und der Extrakt im Vakuum auf 4 ml eingeengt. Nach Abkühlen auf -78°C bilden sich grüne Kristalle, die abfiltriert, mehrmals mit kaltem Pentan gewaschen und im Vakuum getrocknet werden. Ausbeute 98 mg (84%); Schmp. 91°C (Zers.). (Gef.: C, 45.94; H 7.30. C₂₄H₄₆F₃O₄P₂Rh ber.: C, 46.46; H, 7.47%). IR (Hexan): $\tilde{\nu}$ (OCO)_{asym} 1705, $\tilde{\nu}$ (C=C) 1615 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 3.40 (s, 3 H, CO₂CH₃), 2.35 (m, 6 H, PC*H*CH₃), 1.44 (dt, *J*(RhH) 1.0, *J*(PH) 2.7 Hz, 1 H, = C*H*CO₂Me), 1.19 (dvt, *N* 14.0, *J*(HH) 7.2 Hz, 36 H, PCHCH₃). ¹³C-NMR (C₆D₆, 50.3 MHz): δ 292.99 (dt, *J*(RhC) 61.3, *J*(PC) 15.3 Hz, Rh=C), 159.34 (q, *J*(CF) 36.3 Hz, CF₃CO₂), 157.84 (s, CO₂Me), 117.15 (q, *J*(CF) 292.7 Hz, CF₃CO₂), 106.76 (dt, *J*(RhC) 16.2, *J*(PC) 4.6 Hz, =CHCO₂Me), 50.55 (s, CO₂CH₃), 24.31 (vt, *N* 20.8 Hz, PCHCH₃), 19.89 (s, PCHCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 44.54 (d, *J*(RhP) 136.3 Hz).

6.9. Synthese von trans- $[Rh(\eta^{1}-O_{2}CCF_{3})(=C=CHMe)-(PiPr_{3})_{2}]$ (14)

Eine Lösung von 180 mg (0.31 mmol) 9 in 2 ml Benzol wird 5 h bei 50°C gerührt. Der nach Abkühlen und Abziehen des Solvens verbleibende violette Feststoff wird zweimal mit je 2 ml kaltem Pentan gewaschen und im Vakuum getrocknet. Ausbeute 164 mg (91%); Schmp. 91°C. (Gef.: C, 47.92; H, 7.89. C₂₃H₄₆F₃O₂- P_2 Rh ber.: C, 47.92; H, 8.04%). IR (Hexan): $\tilde{\nu}(\text{OCO})_{\text{asym}}$ 1705, $\tilde{\nu}(\text{C=C})$ 1690 cm⁻¹. ¹H-NMR (C₆D₆, 200 MHz): δ 2.33 (m, 6 H, PCHCH₃), 1.61 (dt, J(PH) 2.5, J(HH) 7.5 Hz, 3 H, =CHCH₃), 1.23 (dvt, N 13.7, J(HH) 7.1 Hz, 36 H, PCHCH₃), 0.36 (dtq, J(RhH) 1.2, J(PH) 3.7, J(HH) 7.5 Hz, 1 H, =CHCH₃). ¹³C-NMR (C₆D₆, 50.3 MHz): δ 298.92 (dt, J(RhC) 56.6, J(PC) 17.5 Hz, Rh=C), 159.41 (q, J(CF) 34.8 Hz, CF₃CO₂), 117.34 (q, J(CF) 293.2 Hz, CF₃CO₂), 99.95 (dt, J(RhC) 16.7, J(PC) 6.0 Hz, =CHMe), 23.73 (vt, N 19.5 Hz, $PCHCH_3$), 20.01 (s, $PCHCH_3$), -1.37 (s, $=CHCH_3$). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 42.99 (d, J(RhP) 140.7 Hz).

6.10. Synthese von $[RhH(C \equiv CPh)(\eta^{1} - O_{2}CCF_{3})(py) - (PiPr_{3})_{2}]$ (15)

(a) Eine Lösung von 90 mg (0.14 mmol) 10 in 10 ml Pentan wird mit 0.1 ml (1.2 mmol) Pyridin versetzt und 30 min bei Raumtemperatur gerührt. Danach werden die flüchtigen Bestandteile im Vakuum entfernt, und der gelbe, ölige Rückstand wird in 5 ml Pentan gelöst. Nach Abkühlen der Lösung auf -78° C erhält man einen farblosen, luftstabilen Feststoff, der abfiltriert, mehrmals mit wenig kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 91 mg (90%).

(b) Analog wie unter (a) beschrieben, jedoch ausgehend von 84 mg (0.13 mmol) 7. Ausbeute 82 mg (85%).

(c) Eine Lösung von 60 mg (0.09 mmol) 12 in 10 ml Pentan wird mit 0.1 ml (1.2 mmol) Pyridin versetzt und 30 min bei 40°C gerührt. Nach dem Abkühlen erfolgt die Aufarbeitung wie unter (a) beschrieben. Ausbeute 61 mg (90%); Schmp. 108°C (Zers.). (Gef.: C, 55.32; H, 7.37; N, 1.97. C₃₃H₅₃F₃NO₂P₂Rh ber.: C, 55.23; H, 7.44; N, 1.95%). IR (C₆H₆): $\tilde{\nu}$ (RhH) 2180, $\tilde{\nu}$ (C≡C) 2110, $\tilde{\nu}$ (OCO)_{asym} 1710 cm⁻¹. ¹H-NMR (C₆D₆, 200 MHz): δ 9.46 (m, 2 H, ortho-H von C₅H₅N), 7.44 (m, 2 H, ortho-H von C₆H₅), 7.20–6.60 (m, 6 H, meta- und para-H von C₅H₅N und C₆H₅), 2.60 (m, 6 H, PCHCH₃), 1.20 und 1.09 (jeweils dvt, N 13.5, J(HH) 7.0 Hz, je 18 H, PCHCH₃), -16.45 (dt, J(RhH) 14.0, J(PH) 14.0 Hz, 1 H, RhH). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 39.01 (d, J(RhP) 98.3 Hz).

6.11. Synthese von trans- $[Rh(\eta^{1}-O_{2}CCH_{3})(HC \equiv CH)-(PiPr_{3})_{2}]$ (16)

In eine Lösung von 86 mg (0.18 mmol) 3 in 3 ml Pentan wird bei -40° C 10 s lang Acetylen eingeleitet, wobei sich ein hellgelber, mäßig luftempfindlicher Feststoff bildet. Dieser wird abfiltriert, zweimal mit je 2 ml kaltem Pentan gewaschen und im Vakuum getrocknet. (Anmerkung: Aufgrund der Reversibilität der Reaktion ist darauf zu achten, daß während der Aufarbeitung an Lösungen von 16 kein Vakuum angelegt wird.) Ausbeute 49 mg (54%); Schmp. 37°C (Zers.). (Gef.: C, 51.98; H, 9.58. C₂₂H₄₇O₂P₂Rh ber.: C, 51.97; H, 9.32%). IR (KBr): *ṽ*(≡CH) 3070, *ṽ*(C≡C) 1712, $\tilde{\nu}(\text{OCO})_{\text{asym}}$ 1610 cm⁻¹. ¹H-NMR (d₈-Toluol, -40°C, 90 MHz): δ 3.03 (d, *J*(RhH) 2.3 Hz, 2 H, HC=CH), 2.08 (s, 3 H, CH_3CO_2), 1.77 (m, 6 H, PCHCH₃), 1.15 (dvt, N 12.9, J(HH) 6.4 Hz, 36 H, PCHC H_3). ³¹P-NMR (d₈-Toluol, -40°C, 36.2 MHz): δ 32.45 (d, J(RhP) 123.1 Hz).

6.12. Synthese von trans- $[Rh(\eta^1 - O_2CCH_3)(HC \equiv CCO_2 - Me)(PiPr_3)_2]$ (17)

Eine Lösung von 74 mg (0.15 mmol) 3 in 3 ml Pentan wird bei -40° C mit 14 µl (0.15 mmol) HC=CCO₂Me versetzt, wobei eine Farbänderung von Rot nach Gelborange eintritt. Danach werden die flüchtigen Bestandteile im Hochvakuum entfernt, der Rückstand wird mit 2 ml Pentan versetzt und auf -78°C gekühlt. Man erhält einen gelben, wenig luftempfindlichen Feststoff, der abfiltriert, zweimal mit wenig kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 71 mg (82%); Schmp. 56°C (Zers.). (Gef.: C, 50.51; H, 8.69. C₂₄H₄₉O₄P₂Rh ber.: C, 50.88; H, 8.72%). IR (KBr): $\tilde{\nu} (\equiv CH)$ 3095, $\tilde{\nu} (C \equiv C)$ 1795, $\tilde{\nu}$ (CO) 1680, $\tilde{\nu}$ (OCO)_{asym} 1575 cm⁻¹. ¹H-NMR $(d_8$ -Toluol, -45° C, 90 MHz): δ 4.95 (d, J(RhH) 2.0 Hz, 1 H, $HC \equiv CCO_2CH_3$), 3.49 (s, 3 H, $HC \equiv$ CCO₂CH₃), 1.87 (s, 3 H, RhO₂CCH₃), 1.80 (m, 6 H, PCHCH₃), 1.21 und 1.09 (jeweils dvt, N 13.6, J(HH) 7.2 Hz, je 18 H, PCHC H_3). ³¹P-NMR (d₈-Toluol, -65°C, 36.2 MHz): δ 34.12 (d, J(RhP) 112.8 Hz).

6.13. Synthese von $[RhH(C \equiv CPh)(\eta^2 - O_2CCH_3) - (PiPr_3)_2]$ (18)

(a) Eine Lösung von 110 mg (0.23 mmol) **3** in 5 ml Pentan wird bei -20°C mit 24 μ l (0.23 mmol) Phenylacetylen versetzt und anschließend 30 min bei Raumtemperatur gerührt. Der nach dem Abziehen des Solvens im Vakuum verbleibende Rückstand wird mit 30 ml Pentan extrahiert und der Extrakt im Vakuum bis zur beginnenden Kristallisation eingeengt. Nach Abkühlen auf -78°C erhält man einen gelben, feinkristallinen Feststoff, der abfiltriert, dreimal mit je 2 ml kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 124 mg (93%).

(b) Eine Lösung von 86 mg (0.18 mmol) 5 in 5 ml Pentan wird mit 40 μ l (0.36 mmol) Phenylacetylen versetzt und 10 min bei Raumtemperatur gerührt, wobei sich die Lösung von Farblos über Orangerot nach Gelb verfärbt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 89 mg (86%).

(c) Eine Lösung von 106 mg (0.19 mmol) **30** in 5 ml Pentan wird mit 11 μ l (0.19 mmol) CH₃CO₂H versetzt und 20 min bei Raumtemperatur gerührt, wobei eine Farbänderung von Orangerot nach Hellgelb eintritt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 99 mg (88%); Schmp. 79°C (Zers.). (Gef.: C, 57.52; H, 9.28. C₂₈H₅₁O₂P₂Rh ber.: C, 57.53; H, 8.79%). IR (KBr): $\tilde{\nu}$ (RhH) 2185, $\tilde{\nu}$ (C=C) 2105, $\tilde{\nu}(\text{OCO})_{\text{asym}}$ 1525 cm⁻¹. ¹H-NMR (C₆D₆, 60 MHz): δ 7.25 (m, 5 H, C₆H₅), 2.50 (m, 6 H, PCHCH₃), 1.83 (s, 3 H, CH_3CO_2), 1.31 und 1.30 (jeweils dvt, N 13.5, J(HH) 7.0 Hz, je 18 H, PCHC H_3), -21.85 (dt, J(RhH) 25.0, J(PH) 12.4 Hz, 1 H, RhH). ¹³C-NMR (C₆D₆, 22.5 MHz): δ 182.91 (s, CH₃CO₂), 130.65, 130.43, 128.35 und 124.45 (jeweils s, C₆H₅), 108.54 (dt, J(RhC) 9.8, J(PC) 2.0 Hz, RhC=CPh), 97.47 (dt, J(RhC) 47.9, J(PC) 17.1 Hz, RhC=CPh), 24.64 (s, CH₂CO₂), 24.17 (vt, N 21.5 Hz, PCHCH₃), 20.05 und 19.57 (jeweils s, PCHCH₃). ³¹P-NMR (C_6D_6 , 36.2 MHz): δ 47.69 (d, J(RhP) 104.0 Hz; dd in off-resonance).

6.14. Synthese von $[RhH(C \equiv CMe)(\eta^2 - O_2CCH_3) - (PiPr_3)_2]$ (19)

(a) In eine Lösung von 116 mg (0.24 mmol) **3** in 12 ml Pentan wird 20 s lang Propin eingeleitet. Anschließend wird die Lösung 10 h bei Raumtemperatur gerührt. Nach Abziehen der flüchtigen Bestandteile im Vakuum wird der verbleibende Rückstand mit 15 ml Pentan extrahiert und der Extrakt im Vakuum auf 2 ml eingeengt. Nach Abkühlen auf -78° C kristallisiert ein farbloser, kurzzeitig luftstabiler Feststoff, der abfiltriert, dreimal mit je 1 ml kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 63 mg (50%).

(b) In eine Lösung von 176 mg (0.36 mmol) 5 in 10 ml Pentan wird 40 s lang Propin eingeleitet. Die Lösung

wird 20 min bei Raumtemperatur gerührt und wie unter (a) beschrieben aufgearbeitet. Ausbeute 176 mg (91%).

(c) Eine Lösung von 98 mg (0.20 mmol) 31 in 5 ml Pentan wird mit 11.5 µl (0.20 mmol) CH₃CO₂H versetzt und 20 min bei Raumtemperatur gerührt, wobei eine Farbänderung von Orange nach Hellgelb eintritt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 90 mg (86%); Schmp. 83°C (Zers.). (Gef.: C, 53.03; H, 9.76. C₂₃H₄₉O₂P₂Rh ber.: C, 52.87; H, 9.45%). IR (Hexan): $\tilde{\nu}$ (RhH) 2200, $\tilde{\nu}$ (C=C) 2140, $\tilde{\nu}(\text{OCO})_{\text{asym}}$ 1555 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 2.46 (m, 6 H, PCHCH₃), 1.98 (t, J(PH) 1.7 Hz, 3 H, $\equiv CCH_3$), 1.85 (s, 3 H, CH₃CO₂), 1.36 und 1.32 (jeweils dvt, N 13.2, J(HH) 6.8 Hz, je 18 H, PCHCH₃), -22.27 (dt, J(RhH) 24.9, J(PH) 12.2 Hz, 1 H, RhH). ¹³C-NMR $(C_6 D_6, 100.6 \text{ MHz})$: δ 182.39 (s, CH₃CO₂), 98.82 (dt, J(RhC) 10.6, J(PC) 2.5 Hz, $RhC \equiv CCH_3$), 74.26 (dt, J(RhC) 47.5, J(PC) 17.0 Hz, RhC=CCH₃), 24.54 (s, CH₃CO₂), 24.18 (vt, N 21.1 Hz, PCHCH₃), 20.13 und 19.54 (jeweils s, PCHCH₃), 6.88 (s, C=CCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 46.55 (d, J(RhP) 104.0 Hz; dd in off-resonance).

6.15. Synthese von $[RhH(C \equiv CPh)(\eta^{1} - O_{2}CCH_{3})(CO) - (PiPr_{3})_{2}]$ (20)

In eine Lösung von 54 mg (0.09 mmol) 18 in 0.5 ml Toluol (oder in 5 ml Pentan) wird bei -20° C 20 s lang CO eingeleitet, wobei eine Farbaufhellung der Reaktionslösung von Gelb nach Hellgelb eintritt. Aufgrund der Reversibilität der Reaktion gelingt es (auch bei tiefen Temperaturen) nicht, 20 aus der Reaktionslösung zu isolieren. Die Synthese der Verbindung 20 in Substanz gelingt durch 12-stündiges Lagern von 18 unter einer CO-Atmosphäre bei - 78°C, wobei eine Farbänderung des feinpulvrigen Feststoffs von Gelb nach Hellgelb eintritt. Ausbeute quantitativ. Beim Entfernen der CO-Atmosphäre bildet sich 18 zurück. ¹H-NMR (d₈-Toluol, -40°C, 90 MHz): δ 7.33 (m, 2 H, ortho-H von C₆H₅), 6.95 (m, 3 H, meta- und para-H von C₆H₅), 2.71 (m, 6 H, PCHCH₃), 1.47 (s, 3 H, CH₃CO₂), 1.24 (dvt, N 14.1, J(HH) 7.1 Hz, 36 H, PCHCH₃), -8.65 (dt, J(RhH) 9.5, J(PH) 9.5 Hz, 1 H, RhH). ³¹P-NMR (d₈-Toluol, -40° C, 36.2 MHz): δ 56.04 (d, J(RhP) 87.9 Hz; dd in off-resonance).

6.16. Synthese von trans- $[Rh(C \equiv CPh)(CO)(PiPr_3)_2]$ (21)

(a) Eine Lösung von 67 mg (0.12 mmol) 22 in 5 ml Pentan wird mit 13 μ l PhC=CH versetzt und 5 min bei Raumtemperatur gerührt. Nach Entfernen der flüchtigen Bestandteile im Vakuum erhält man einen hellgelben Feststoff, der zur vollständigen Reinigung aus Pentan umkristallisiert wird. Ausbeute 62 mg (91%).

(b) In eine Lösung von 53 mg (0.09 mmol) 18 in 0.5 ml Toluol wird bei - 78°C 30 s lang CO eingeleitet. Dabei wird in situ die Verbindung 20 gebildet. Anschließend wird das Reaktionsgemisch langsam auf Raumtemperatur erwärmt, wobei eine Farbänderung von Farblos nach Gelb eintritt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 41 mg (82%); Schmp. 132°C. (Gef.: C, 58.48; H, 8.58. C₂₇H₄₇OP₂Rh ber.: C, 58.69; H, 8.57%). IR (Hexan): $\tilde{\nu}(C \equiv C)$ 2080, $\tilde{\nu}(CO)$ 1945 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 7.45 (m, 2 H, ortho-H von C₆H₅), 7.06 (m, 3 H, meta- und para-H von C₆H₅), 2.48 (m, 6 H, PCHCH₃), 1.33 (dvt, N 13.3, J(HH) 6.9 Hz, 36 H, PCHCH₃). ¹³C-NMR (C₆D₆, 100.6 MHz): δ 196.47 (dt, J(RhC) 58.9, J(PC) 13.3 Hz, RhCO), 130.40, 129.53, 128.40, 124.99 (jeweils s, C₆H₅), 125.07 (dt, J(RhC) 41.4, J(PC) 22.1 Hz, RhC≡CPh), 119.79 (dt, J(RhC) 11.6, J(PC) 2.9 Hz, RhC≡CPh), 26.24 (vt, N 21.8 Hz, PCHCH₃), 20.48 (s, PCHCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 53.28 (d, J(RhP) 126.0 Hz).

6.17. Synthese von trans- $[Rh(\eta^1 - O_2CCH_3)(=C=CHPh) - (PiPr_3)_2]$ (23)

Eine Lösung von 88 mg (0.15 mmol) 18 in 20 ml Pentan wird 2 h bei - 20°C bestrahlt (Osram 500 W, Oriel Lampenhaus, Quarzkondensor, 5 cm Wasserfilter, $\lambda > 300$ nm). Danach wird die Lösung filtriert, das Filtrat im Vakuum bis zur beginnenden Kristallisation eingeengt und das Konzentrat zur Vervollständigung der Kristallisation auf - 78°C gekühlt. Man erhält einen violetten, luftstabilen Feststoff, der abfiltriert, mehrmals mit wenig kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 38 mg (43%); Schmp. 85°C (Zers.). IR (Hexan): $\tilde{\nu}$ (C=C) 1610, $\tilde{\nu}$ (OCO)_{asym} 1595 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 7.19 (m, 5 H, C₆H₅), 2.43 (m, 6 H, PCHCH₃), 1.93 (s, 3 H, CH₃CO₂), 1.71 (dt, J(RhH) 1.3, J(PH) 3.3 Hz, 1 H, =CHPh), 1.31 (dvt, N 13.5, J(HH) 7.0 Hz, 36 H, PCHC H_3). ¹³C-NMR (C₆D₆, 50.3 MHz): δ 288.79 (dt, J(RhC) 56.7, J(PC) 17.4 Hz, Rh=C), 176.08 (s, CH₃CO₂), 115.98 (dt, J(RhC) 15.5, J(PC) 7.2 Hz, =CHPh), 24.95 (s, CH_3CO_2), 24.34 (vt, N 21.8 Hz, PCHCH₃), 20.23 (s, PCHCH₃). (Wegen der Reversibilität der Reaktion sind neben den Signalen von 23 stets auch die der Verbindung 18 zu beobachten; eine exakte Zuordnung der Resonanzen der Phenyl-C-Atome ist daher nicht möglich). ³¹P-NMR (C_6D_6 , 36.2 MHz): δ 42.86 (d, J(RhP) 140.7 Hz).

6.18. Synthese von trans- $[Rh(\eta^1-O_2CCH_3)(=C=CH-Me)(PiPr_3)_2]$ (24)

Analog wie für 23 beschrieben, ausgehend von 90 mg (0.17 mmol) 19. Man erhält einen violetten, luftsta-

bilen Feststoff. Ausbeute 47 mg (52%); Schmp. 83°C (Zers.). (Gef.: C, 53.14; H, 9.40. $C_{23}H_{49}O_2P_2Rh$ ber.: C, 52.87; H, 9.45%). IR (KBr): $\tilde{\nu}$ (C=C) 1680, $\tilde{\nu}$ (OCO)_{asym} 1570 cm⁻¹. ¹H-NMR (C₆D₆, 400 MHz): δ 2.44 (m, 6 H, PCHCH₃), 1.95 (s, 3 H, CH₃CO₂), 1.73 (ddt, J(RhH) 0.4, J(PH) 2.5, J(HH) 7.2 Hz, 3 H, =CHCH₃), 1.33 (dvt, N 13.3, J(HH) 7.2 Hz, 36 H, PCHCH₃), 0.45 (dtq, J(RhH) 1.3, J(PH) 3.4, J(HH) 7.2 Hz, =CHCH₃). ¹³C-NMR (C₆D₆, 100.6 MHz): δ 288.24 (dt, J(RhC) 55.3, J(PC) 17.9 Hz, Rh=C), 175.13 (s, CH₃CO₂), 101.77 (dt, J(RhC) 16.4, J(PC) 6.8 Hz, =CHCH₃), 25.06 (s, CH₃CO₂), 23.93 (vt, N 18.9 Hz, PCHCH₃), 20.16 (s, PCHCH₃), -0.68 (s, =CHCH₃). ³¹P-NMR (C₆D₆, 162.0 MHz): δ 43.11 (d, J(RhP) 142.0 Hz).

6.19. Synthese von $[RhH(C \equiv CH)(\eta^2 - O_2CCH_3)(PiPr_3)_2]$ (25)

(a) In eine Lösung von 256 mg (0.53 mmol) **5** in 10 ml Pentan wird bei Raumtemperatur 30 s lang Acetylen eingeleitet, wobei zunächst eine rasche Farbänderung von Farblos nach Orange zu beobachten ist. Nach 5 min Rühren ist die Reaktionslösung hellgelb gefärbt. Anschließend werden die flüchtigen Bestandteile im Vakuum entfernt, der verbleibende Rückstand wird mit 15 ml Pentan extrahiert und der Extrakt im Vakuum auf 3 ml eingeengt. Nach Abkühlen auf -78° C kristallisiert ein farbloser, kurzzeitig luftstabiler Feststoff, der abfiltriert, zweimal mit je 0.5 ml kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 199 mg (74%).

(b) Eine Lösung von 91 mg (0.19 mmol) **29** in 5 ml Pentan wird mit 11 μ l (0.19 mmol) CH₃CO₂H versetzt und 20 min bei Raumtemperatur gerührt. Dabei tritt eine Farbänderung von Orange nach Hellgelb ein. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 69 mg (71%); Schmp. 80°C (Zers.). (Gef.: C, 51.88; H, 9.40. C₂₂H₄₇O₂P₂Rh ber.: C, 51.97; H, 9.32%). IR (KBr): $\tilde{\nu}$ (=CH) 3290, $\tilde{\nu}$ (RhH) 2170, $\tilde{\nu}$ (C=C) 1965, $\tilde{\nu}$ (OCO)_{asym} 1535 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 2.55 (m, 6 H, PCHCH₃), 2.01 (dt, J(RhH) 1.9, J(PH) 1.9 Hz, 1 H, C=CH), 1.84 (s, 3 H, CH₃CO₂), 1.35 und 1.32 (jeweils dvt, N 13.7, J(HH) 6.3 Hz, je 18 H, PCHCH₃), -21.80 (dt, J(RhH) 24.9, J(PH) 12.2 Hz, 1 H, RhH). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 46.25 (d, J(RhP) 102.6 Hz; dd in off-resonance).

6.20. Synthese von $[RhH(C \equiv CCO_2Me)(\eta^2 - O_2CCH_3) - (PiPr_3)_2]$ (26)

Eine Lösung von 106 mg (0.22 mmol) 5 in 5 ml Pentan wird bei -20° C mit 39 μ l (0.44 mmol) HC=CCO₂Me versetzt, wobei eine Farbänderung von Farblos über Rot nach Hellgelb eintritt. Nach Entfernen der flüchtigen Bestandteile im Hochvakuum erhält man ein hellgelbes, kurzzeitig luftstabiles Öl. Ausbeute 124 mg (99%). IR (Hexan): $\tilde{\nu}$ (C=C) 2100, $\tilde{\nu}$ (C=O) 1690, $\tilde{\nu}$ (OCO)_{asym} 1545 cm⁻¹. ¹H-NMR (C₆D₆, 60 MHz): δ 3.38 (s, 3 H, C=CCO₂CH₃), 2.48 (m, 6 H, PCHCH₃), 1.75 (s, 3 H, CH₃CO₂), 1.29 und 1.26 (jeweils dvt, *N* 13.4, *J*(HH) 6.7 Hz, je 18 H, PCHCH₃), -21.25 (dt, *J*(RhH) 24.2, *J*(PH) 11.5 Hz, 1 H, RhH). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 48.03 (d, *J*(RhP) 99.7 Hz; dd in off-resonance).

6.21. Synthese von trans- $[Rh(\eta^{1}-O_{2}CCH_{3})(=C=CH_{2})-(PiPr_{3})_{2}]$ (27)

Eine Lösung von 112 mg (0.22 mmol) 25 in 1 ml Benzol bzw. 3 ml Aceton wird 3 d bzw. 5 h bei Raumtemperatur gerührt. Danach wird das Solvens im Vakuum entfernt, der verbleibende Rückstand mit 20 ml Pentan extrahiert und der Extrakt im Vakuum auf 5 ml eingeengt. Nach Abkühlen auf -78°C bilden sich violette, luftstabile Kristalle, die abfiltriert, mehrmals mit je 3 ml kaltem Pentan gewaschen und im Vakuum getrocknet werden. Ausbeute 95 mg (85%); Schmp. 72°C (Zers.). (Gef.: C, 51.96; H, 9.04. C₂₂H₄₇O₂P₂Rh ber.: C, 51.97; H, 9.32%). IR (KBr): $\tilde{\nu}$ (C=C) 1620, $\tilde{\nu}(\text{OCO})_{\text{asym}}$ 1560 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 2.53 (m, 6 H, PCHCH₃), 1.97 (s, 3 H, CH₃CO₂), 1.34 (dvt, N 13.3, J(HH) 6.4 Hz, 36 H, PCHCH₃), 0.05 (dt, J(RhH) 1.1, J(PH) 3.3 Hz, 2 H, =CH₂). ¹³C-NMR (C₆D₆, 100.6 MHz): δ 287.95 (dt, J(RhC) 56.1, J(PC) 17.7 Hz, Rh=C), 175.32 (s, CH₃CO₂), 92.40 (dt, J(RhC) 17.3, J(PC) 6.4 Hz, =CH₂), 25.05 (s, CH₃CO₂), 23.87 (vt, N 19.5 Hz, PCHCH₃), 20.08 (s, PCHCH₃).³¹P-NMR (C₆D₆, 36.2 MHz): δ 42.03 (d, J(RhP) 142.2 Hz).

6.22. Synthese von trans- $[Rh(\eta^{1}-O_{2}CCH_{3})(=C=CH-CO_{2}Me)(PiPr_{3})_{2}]$ (28)

Eine Lösung von 118 mg (0.21 mmol) 26 in 0.5 ml Benzol wird 5 h bei Raumtemperatur gerührt. Nach der Aufarbeitung, analog wie für 28 beschrieben, erhält man violette, luftstabile Kristalle. Ausbeute 83 mg (70%); Schmp. 117°C (Zers.). (Gef.: C, 50.55; H, 8.94. C₂₄H₄₉O₄P₂Rh ber.: C, 50.88; H, 8.72%). IR (KBr): $\tilde{\nu}$ (C=O) 1705, $\tilde{\nu}$ (C=C) 1600, $\tilde{\nu}$ (OCO)_{asym} 1580 cm⁻¹. ¹H-NMR (C_6D_6 , 400 MHz): δ 3.48 (s, 3 H, =CHCO₂C H_3), 2.40 (m, 6 H, PCHCH₃), 1.80 (dt, J(RhH) 0.7, J(PH) 2.8 Hz, 1 H, =CHCO, Me), 1.78 (s, 3 H, CH₃CO₂), 1.30 (dvt, N 13.7, J(HH) 7.1 Hz, 36 H, PCHC H_3). ¹³C-NMR (C₆D₆, 100.6 MHz): δ 278.84 (dt, J(RhC) 63.1, J(PC) 16.3 Hz, Rh=C), 177.57 (s, CH_3CO_2), 158.91 (s, = $CHCO_2CH_3$), 109.27 (dt, J(RhC) 16.7, J(PC) 6.1 Hz, $=CHCO_2CH_3$), 50.17 (s, =CHCO₂CH₃), 24.68 (s, CH_3CO_2), 24.32 (vt, N 19.9 Hz, PCHCH₃), 19.98 (s, PCHCH₃). ³¹P-NMR (C_6D_6 , 36.2 MHz): δ 44.01 (d, J(RhP) 136.3 Hz).

6.23. Synthese von trans- $[Rh(C \equiv CH)(C_2H_4)(PiPr_3)_2]$ (29)

(a) In eine Lösung von 250 mg (0.52 mmol) **5** in 5 ml Pentan wird bei -30° C mehrere Minuten Acetylen eingeleitet, wobei eine Farbänderung von Farblos nach Orangerot eintritt und ein orangefarbener Feststoff auskristallisiert. Dieser wird abfiltriert, mehrmals mit wenig kaltem Pentan gewaschen und im Vakuum getrocknet. Ausbeute 129 mg (52%).

(b) In eine Lösung von 188 mg (0.39 mmol) 5 in 3 ml Aceton wird bei -30°C 3 min lang Acetylen eingeleitet. Dabei tritt zunächst eine Farbänderung von Farblos nach Orangerot ein und nach etwa 20 s beginnt die Kristallisation eines orangefarbenen Feststoffs. Dieser wird abfiltriert, mehrmals mit kaltem Aceton gewaschen und im Vakuum getrocknet. Ausbeute 161 mg (87%); Schmp. 80°C (Zers.). (Gef.: C, 55.21; H, 9.99. C₂₂H₄₇P₂Rh ber.: C, 55.46; H, 9.94%). IR (Pentan): $\tilde{\nu}(\equiv CH)$ 3280, $\tilde{\nu}(C\equiv C)$ 1935 cm⁻¹. ¹H-NMR ($C_6 D_6$, 90 MHz): δ 3.16 (dt, J(RhH) 1.6, J(PH) 3.4 Hz, 4 H, C₂H₄), 2.93 (dt, J(RhH) 1.8, J(PH) 1.7 Hz, 1 H, C=CH), 2.47 (m, 6 H, PCHCH₃), 1.32 (dvt, N 12.1, J(HH) 6.1 Hz, 36 H, PCHC H_3). ¹³C-NMR (C₆D₆, 22.5 MHz): δ 118.47 (dt, J(RhC) 48.8, J(PC) 20.5 Hz, RhC=CH), 107.50 (dt, J(RhC) 13.7, J(PC) 2.0 Hz, RhC=CH), 53.31 (d, J(RhC) 10.7 Hz, C₂H₄), 23.47 (vt, N 18.7 Hz, PCHCH₃), 20.79 (s, PCHCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 38.13 (d, J(RhP) 128.9 Hz).

6.24. Synthese von trans- $[Rh(C \equiv CPh)(C_2H_4)(PiPr_3)_2]$ (30)

(a) Eine Lösung von 102 mg (0.21 mmol) 5 in 2 ml Aceton wird bei -30° C mit 47 μ l (0.42 mmol) PhC=CH versetzt und 10 min unter einer C₂H₄-Atmosphäre gerührt, wobei eine Farbänderung von Farblos nach Orangerot zu beobachten ist. Es kristallisiert ein orangefarbener Feststoff, der abfiltriert, mehrmals mit wenig kaltem Aceton gewaschen und im Vakuum getrocknet wird. Ausbeute 56 mg (48%).

(b) Eine Lösung von 110 mg (0.19 mmol) **18** in 10 ml Ether wird bei -20° C unter Ethenatmosphäre mit 0.5 ml (0.47 mmol) einer 0.94 M Lösung von $iC_{3}H_{7}$ MgCl in Ether versetzt, wobei eine Farbänderung von Gelb nach Orange eintritt. Nach 5 min Rühren wird das Solvens im Vakuum entfernt, der Rückstand mit 20 ml Pentan extrahiert und der Extrakt im Vakuum zur Trockne eingeengt. Der verbleibende orangebraune Feststoff wird mehrmals mit wenig kaltem Pentan (bzw. Aceton) gewaschen und im Vakuum getrocknet. Ausbeute 53 mg (51%); Schmp. 114°C (Zers.). (Gef.: C, 61.04; H, 9.41. C₂₈H₅₁P₂Rh ber.: C, 60.86; H, 9.30%). IR (C₆H₆): $\tilde{\nu}$ (C=C) 2060 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 7.45 (m, 2 H, ortho-H von C₆H₅), 7.15 (m, 3 H, meta-H und para-H von C₆H₅), 3.21 (dt, J(RhH) 1.5, *J*(PH) 3.3 Hz, 4 H, C₂H₄), 2.39 (m, 6 H, PC*H*CH₃), 1.30 (dvt, *N* 12.8, *J*(HH) 6.7 Hz, 36 H, PCHCH₃). ¹³C-NMR (C₆D₆, 100.6 MHz): δ 129.98, 129.70, 128.47 und 124.46 (jeweils s, C₆H₅), 127.48 (dt, *J*(RhC) 48.7, *J*(PC) 21.1 Hz, RhC≡CPh), 122.22 (dt, *J*(RhC) 13.4, *J*(PC) 2.1 Hz, RhC≡CPh), 54.42 (d, *J*(RhC) 10.1 Hz, C₂H₄), 23.49 (vt, *N* 17.7 Hz, PCHCH₃), 20.57 (s, PCHCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 39.53 (d, *J*(RhP) 127.5 Hz).

6.25. Synthese von trans- $[Rh(C \equiv CMe)(C_2H_4)(PiPr_3)_2]$ (31)

(a) Eine Lösung von 103 mg (0.20 mmol) **19** in 6 ml eines 1:1-Gemisches aus Pentan und NEt₃ wird mit 0.4 g wasserfreiem Na₂CO₃ versetzt und 10 h bei Raumtemperatur unter Ethenatmosphäre gerührt. Danach werden die flüchtigen Bestandteile im Vakuum entfernt, der Rückstand wird mit 30 ml Pentan extrahiert und der Extrakt im Vakuum zur Trockne gebracht. Man erhält einen orangefarbenen Feststoff, der bei -78° C aus wenig Aceton umkristallisiert wird. Ausbeute 50 mg (52%).

(b) Eine Lösung von 98 mg (0.19 mmol) **19** in 5 ml Ether wird unter Ethenatmosphäre mit 40 mg (0.22 mmol) NaN(SiMe₃)₂ versetzt und 5 min bei Raumtemperatur gerührt, wobei eine Farbänderung von Gelb nach Orangerot eintritt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 47 mg (51%).

(c) Zu einer Lösung von 115 mg (0.22 mmol) 19 in 10 ml Ether werden unter Ethenatmosphäre bei -20° C 0.70 ml (0.66 mmol) einer 0.94 M Lösung von iC₃H₇MgCl getropft, wobei eine Farbänderung von Gelb nach Orange eintritt. Nach 20 min Rühren unter Erwärmung auf Raumtemperatur erfolgt die Aufarbeitung wie für (a) beschrieben. Ausbeute 61 mg (56%); Schmp. 72°C (Zers.). (Gef.: C, 56.12; H, 9.96. $C_{23}H_{49}P_2$ Rh ber.: C, 56.32; H, 10.07%). IR (Hexan): ν(C≡C) 2100 cm⁻¹. ¹H-NMR (C_6D_6 , 400 MHz): δ 3.07 (dt, J(RhH) 1.5, J(PH) 3.2 Hz, 4 H, C₂H₄), 2.39 (m, 6 H, PCHCH₃), 2.03 (t, J(PH) 2.0 Hz, 3 H, \equiv CCH₃), 1.32 (dvt, N 12.8, J(HH) 6.7 Hz, 36 H, PCHCH₃). ¹³C-NMR (C_6D_6 , 100.6 MHz): δ 115.00 (dt, J(RhC) 13.5, J(PC) 0.9 Hz, RhC=CCH₃), 109.47 (dt, J(RhC)47.7, J(PC) 21.6 Hz, RhC=CCH₃), 51.39 (d, J(RhC) 10.4 Hz, C_2H_4), 23.61 (vt, N 17.4 Hz, PCHCH₃), 20.60 (s, $PCHCH_3$), 6.90 (s, $C=CCH_3$). ³¹P-NMR (C₆D₆, 162.0 MHz): δ 39.51 (d, J(RhP) 129.2 Hz).

6.26. Synthese von $[Rh(C \equiv CCO_2Me)\{(E)-CH=CH-CO_2Me\}(\eta^2-O_2CCH_3)(PiPr_3)_2\}$ (32)

(a) Eine Lösung von 91 mg (0.16 mmol) **26** in 10 ml Pentan wird mit 14 μ l (0.16 mmol) HC=CCO₂Me versetzt und 15 min bei Raumtemperatur gerührt, wobei eine Farbänderung von Hellgelb über Blauviolett nach Farblos zu beobachten ist. Nach Abdestillieren der flüchtigen Bestandteile im Vakuum wird der verbleibende Rückstand mit 10 ml Pentan extrahiert und der Extrakt im Vakuum zur Trockne eingeengt. Man erhält ein farbloses Öl. Ausbeute 103 mg (99%).

(b) Eine Lösung von 75 mg (0.13 mmol) 17 in 10 ml Pentan wird bei -20° C mit 12 μ l (0.13 mmol) HC=CCO₂Me versetzt und unter Erwärmen auf Raumtemperatur gerührt, wobei eine Farbänderung von Gelb über Blaugrün nach Farblos eintritt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 78 mg (91%).

(c) Eine Lösung von 51 mg (0.09 mmol) **28** in 1 ml Benzol wird mit 8 μ l (0.09 mmol) HC=CCO₂Me versetzt und 1 h bei Raumtemperatur gerührt, wobei eine Farbänderung von Rotviolett über Blauviolett nach Farblos eintritt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 57 mg (98%).

(d) Eine Lösung von 131 mg (0.22 mmol) **33** in 1 ml Benzol wird mit 13 μ l (0.22 mmol) CH₃CO₂H versetzt und 1 h bei Raumtemperatur gerührt, wobei eine Farbänderung von Blauviolett nach Farblos eintritt. Die Aufarbeitung erfolgt wie unter (a) beschrieben. Ausbeute 143 mg (99%). IR (Hexan): $\tilde{\nu}$ (C=C) 2105, $\tilde{\nu}$ (C=O) 1710, 1695, $\tilde{\nu}$ (OCO)_{asym} 1550 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 9.57 (ddt, J(RhH) 1.6, J(PH) 2.3, J(HH) 14.8 Hz, 1 H, RhCH=CH), 6.67 (ddt, J(RhH) 1.5, J(PH) 1.6, J(HH) = 14.8 Hz, 1 H, RhCH=CH), 3.53 und 3.43 (jeweils s, je 3 H, CO₂CH₃), 1.75 (s, 3 H, RhO₂CCH₃), 2.55 (m, 6 H, PCHCH₃), 1.31 und 1.13 (jeweils dvt, N 13.6, J(HH) 7.0 Hz, je 18 H, PCHCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 28.99 (d, J(RhP) 92.3 Hz).

6.27. Synthese von trans- $[Rh(C \equiv CCO_2Me)(=C = CH-CO_2Me)(PiPr_3)_2]$ (33)

Eine Lösung von 403 mg (0.84 mmol) 3 in 18 ml eines 1:1-Gemisches aus Pentan und NEt3 wird auf -40°C gekühlt und nacheinander mit 0.4 g wasserfreiem Na₂CO₃ und 148 µl (1.67 mmol) HC=CCO₂Me versetzt. Dabei tritt eine rasche Farbänderung von Rot nach Gelb ein. Man rührt 30 min unter Erwärmung auf Raumtemperatur, engt die nun dunkelblaue Lösung im Hochvakuum zur Trockne ein und extrahiert den Rückstand mit 30 ml Pentan. Nach Abkühlen der Lösung auf – 78°C erhält man blauschwarze, kurzzeitig luftstabile Kristalle, die abfiltriert, dreimal mit je 4 ml kaltem Pentan gewaschen und im Vakuum getrocknet werden. Ausbeute 351 mg (71%); Schmp. 101°C (Zers.). (Gef.: C, 53.08; H, 8.41. C₂₆H₄₉O₄P₂Rh ber.: C, 52.88; H, 8.36%). IR (Hexan): $\tilde{\nu}$ (C=C) 2095, $\tilde{\nu}$ (C=O) 1710, 1697, $\tilde{\nu}$ (C=C) 1605, 1590 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 3.43 (s, 3 H, =CHCO₂CH₃), 3.37 (s, 3 H, \equiv CCO₂CH₃), 2.63 (m, 6 H, PCHCH₃), 1.44 (dt, J(RhH) 0.7, J(PH) 3.2 Hz, 1 H, =CHCO₂CH₃), 1.26 (dvt, N

14.0, J(HH) 7.1 Hz, 36 H, PCHC H_3). ¹³C-NMR (C₆D₆, 100.6 MHz): δ 302.34 (dt, J(RhC) 54.3, J(PC) 14.4 Hz, Rh=C), 157.33 (s, =CHCO₂CH₃), 153.43 (s, =CCO₂CH₃), 130.65 (dt, J(RhC) 39.0, J(PC) 17.8 Hz, RhC=C), 125.99 (d, J(RhC) 10.2 Hz, RhC=C), 109.12 (dt, J(RhC) 11.9, J(PC) 5.1 Hz, =CHCO₂CH₃), 50.98 und 50.49 (jeweils s, CO₂CH₃), 25.76 (vt, N 21.8 Hz, PCHCH₃), 20.31 (s, PCHCH₃). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 48.30 (d, J(RhP) 130.4 Hz).

6.28. Synthese von trans- $[Rh(C=CPh)(=C=CHPh)-(PiPr_3)_2]$ (34)

Eine Lösung von 102 mg (0.17 mmol) 18 in 4 ml eines Gemisches aus Pentan und NEt₃ (1:1) wird nacheinander mit 19 μ l (0.17 mmol) Phenylacetylen und einem großen Überschuß NaOH (ca. 250 mg) versetzt und 1 h bei Raumtemperatur gerührt. Dabei tritt eine Farbänderung von Gelb über Orange nach Grün ein. Nach Entfernen der flüchtigen Bestandteile im Hochvakuum wird der Rückstand mit 30 ml Pentan extrahiert und der Extrakt im Vakuum bis zur beginnenden Kristallisation eingeengt. Abkühlen auf -78°C liefert einen blauen mikrokristallinen Feststoff, der mehrmals mit wenig kaltem Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute 68 mg (63%); Schmp. 100°C (Zers.). (Gef.: C, 64.93; H, 8.94. $C_{34}H_{53}P_2Rh$ ber.: C, 65.18; H, 8.53%). IR (KBr): $\tilde{\nu}$ (C=C) 2070, $\tilde{\nu}$ (C=C) 1611 cm⁻¹. ¹H-NMR (C₆D₆, 90 MHz): δ 7.20 (m, 10 H, C₆H₅), 2.72 (m, 6 H, PCHCH₃), 1.55 (dt, J(RhH) 0.8, J(PH) 3.3 Hz, 1 H, =CHPh), 1.34 (dvt, N 13.6, J(HH) 7.0 Hz, 36 H, PCHCH₃). ¹³C-NMR (C₆D₆, 100.6 MHz): δ 311.29 (dt, J(RhC) 49.8, J(PC) 15.5 Hz, Rh=C), 136.98 (d, J(RhC) 9.7 Hz, RhC≡CPh), 130.15, 129.11, 128.58, 128.39, 125.80, 125.34 und 124.81 (jeweils s, C₆H₅), 126.53 (dt, J(RhC) 38.2, J(PC) 15.5 Hz, RhC≡CPh), 125.98 (t, J(PC) 1.8 Hz, =CHC_{ipso}), 115.80 (dt, J(RhC) 12.9, J(PC) 5.9 Hz, =CHPh), 25.69 (vt, N 21.2 Hz, $PCHCH_{3}$, 20.62 (s, $PCHCH_{3}$). ³¹P-NMR (C₆D₆, 36.2 MHz): δ 46.82 (d, J(RhP) 134.8 Hz).

6.29. Synthese von $[RhH(C \equiv CH)(\eta^2(C,O) - C(=CH_2) - OC(CH_3) = O)(PiPr_3)_2]$ (35)

(a) Eine Lösung von 91 mg (0.18 mmol) **25** in 5 ml Pentan wird 4 h unter Acetylenatmosphäre (0.7 atm) gerührt, wobei eine langsame Verfärbung der Reaktionslösung von Hellgelb nach Gelbbraun eintritt und eine geringe Menge eines violetten Feststoffs (vermutlich polymeres Acetylen) entsteht. Anschließend werden die flüchtigen Bestandteile im Hochvakuum entfernt. Das verbleibende Öl wird viermal mit je 10 ml Pentan extrahiert, die vereinigten Extrakte werden im Vakuum zur Trockne gebracht und der Rückstand wird in wenig Pentan gelöst. Das nach Abkühlen der Lösung auf -78° C kristallisierende, hellgelbe Pulver wird abfiltriert, mehrmals mit kaltem Pentan gewaschen und im Vakuum getrocknet. Ausbeute 56 mg (59%).

(b) Analog wie unter (a) beschrieben, jedoch ausgehend von 170 mg (0.35 mmol) 5. Ausbeute 121 mg (64%); Schmp. 93°C (Zers.). (Gef.: C, 54.49; H, 9.33. $C_{24}H_{49}O_2P_2Rh$ ber.: C, 53.93; H, 9.24%). IR (C_6H_6): $\tilde{\nu}(\equiv CH)$ 3250, $\tilde{\nu}(RhH)$ 2190, $\tilde{\nu}(C=C)$ 1950, $\tilde{\nu}(C=O)$ 1640, $\tilde{\nu}$ (C=C) 1575 cm⁻¹. ¹H-NMR (C₆D₆, 400 MHz): δ 5.65 und 4.37 (jeweils m, je 1 H von =CH₂), 2.90 (m, 6 H, PCHCH₃), 2.15 (dt, J(RhH) 1.4, J(PH) 1.4 Hz, 1 H, C=CH), 1.77 (s, 3 H, CH₃CO₂), 1.32 und 1.20 (jeweils dvt, N 13.5, J(HH) 6.7 Hz, je 18 H, PCHC H_3), -20.32(dt, J(RhH) 26.1, J(PH) 13.9 Hz, 1 H, RhH).¹³C-NMR (C₆H₆, 100.6 MHz): δ 198.39 (dt, J(RhC) 30.5, J(PC) 13.0 Hz, RhC), 176.78 (s, CH₃CO₂), 110.47 (dt, J(RhC) 33.8, J(PC) 17.1 Hz, RhC=CH), 105.46 (dt, J(RhC) 3.4, J(PC) 3.4 Hz, =CH₂, 96.08 (d, J(RhC) 7.2 Hz, RhC=CH), 24.92 (vt, N 22.0 Hz, PCHCH₃), 20.05 (s, PCHCH₃), 19.56 (s, CH₃CO₂), 19.37 (s, PCHCH₃). ³¹P-NMR (C_6D_6 , 162.0 MHz): δ 41.50 (d, J(RhP)102.5 Hz; dd in off-resonance). Anmerkung: Wird das ölige Rohprodukt ¹H- und ³¹P-NMR-spektroskopisch untersucht, so läßt sich neben 35 eine weitere Verbindung (Anteil ca. 20%) nachweisen, bei der es sich vermutlich um den Ethinyl(vinyl)rhodium(III)-Komplex [Rh(C=CH)(CH=CH₂)(η^2 -O₂CCH₃)(PiPr₃)₂] handelt.

Dank

Wir danken der Volkswagenstiftung, dem Fonds der Chemischen Industrie und der Degussa AG für großzügig gewährte Unterstützung. Unser Dank gilt außerdem Frau M.L.Schäfer für NMR-Messungen, Frau U. Neumann und Herrn C.P. Kneis für Elementaranalysen, Frau R. Schedl für DTA-Messungen und vor allem Frau A.Burger für engagierte Mitarbeit.

Literatur

- M. Schäfer, J. Wolf und H. Werner, J. Chem. Soc., Chem. Commun., (1993) 1341.
- [2] H. Werner, M. Schäfer, O. Nürnberg und J. Wolf, Chem. Ber., 127 (1994) 27.
- [3] S. Poelsma, B. Windmüller, D. Barth und H. Werner, J. Chem. Soc., Dalton Trans., zur Publikation eingereicht.
- [4] M. Schäfer, J. Wolf und H. Werner, J. Organomet. Chem., 476 (1994) 85.
- [5] H. Werner, F.J. Garcia Alonso, H. Otto und J. Wolf, Z. Naturforsch., Teil B, 43 (1988) 722.
- [6] H. Werner und U. Brekau, Z. Naturforsch., Teil B, 44 (1989) 1438.
- [7] (a) P.T. Czech, F.-Q. Ye und R.F. Fenske, Organometallics, 9 (1990) 2016; (b) P.J. Brothers und W.R. Roper, Chem. Rev., 88 (1988) 1293; (c) M.A. Gallop und W.R. Roper, Adv. Organomet. Chem., 25 (1986) 121.

- [8] (a) H. Werner, J. Wolf, F.J. Garcia Alonso, M.L. Ziegler und O. Serhadli, J. Organomet. Chem., 336 (1987) 397; (b) T. Rappert, O. Nürnberg, N. Mahr, J. Wolf und H. Werner, Organometallics, 11 (1992) 4156.
- [9] (a) S.D. Robinson und M.F. Uttley, J. Chem. Soc., Dalton Trans., (1973) 1912; (b) G.B. Deacon und R.J. Phillips, Coord. Chem. Rev., 33 (1980) 227.
- [10] A. Höhn, H. Otto, M. Dziallas und H. Werner, J. Chem. Soc., Chem. Commun., (1987) 852.
- [11] A. Höhn und H. Werner, J. Organomet. Chem., 382 (1990) 255.
- [12] C. Bianchini, A. Meli, M. Peruzzini, F. Zanobini, C. Bruneau und P.H. Dixneuf, Organometallics, 9 (1990) 1155.
- [13] Siehe hierzu theoretische Arbeiten von Y. Wakatsuki; persönliche Mitteilung.
- [14] T. Daniel, N. Mahr, T. Braun und H. Werner, *Organometallics*, *12* (1993) 1475.
- [15] H. Friebolin, *Ein- und zweidimensionale NMR-Spektroskopie*, VCH, Weinheim, 1988, pp. 113–116.